Kinetic viscous shock layer near a rotating sharp cone

Capa

Citar

Texto integral

Resumo

The paper considers a nonequilibrium (in terms of internal and translational degrees of freedom) flow of a polyatomic gas in a macrokinetic thin viscous shock layer (kinetic TVSL) near a circular sharp cone rotating around its own axis. A transformation of variables that regularizes the problem is proposed.

The possibility of constructing a solution to the considered problem for a kinetic TVSL based on the Navier–Stokes model for solving this problem is indicated.

A closed local regularized problem is formulated that describes an irregular flow in a kinetic TVSL near the pointed tip of a rotating cone.

Texto integral

1. Введение

Предлагаемый анализ имеет дело с категорией высокоскоростных течений разреженного вязкого газа. Череда публикаций по теме вязкого гиперзвука только за последний период [1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 6] определенным образом свидетельствует о важности и одновременно неисчерпаемости непростых проблем данного раздела высотной аэродинамики больших скоростей.

Течение вязкого газа вблизи вращающихся тел является одной из актуальных проблем такого рода [7, 8].

Исследования по теме преимущественно фокусировались, как в [7, 8], на обтекании гладких затупленных тел, при этом в анализе преобладал континуальный навье-стоксовский подход к проблеме.

Ниже предлагается анализ течения занавье-стоксовского диапазона режимов по указанной проблеме (высокоскоростного обтекания вращающихся тел), целиком базирующийся на кинетической теории газов (приближение кинетического тонкого вязкого ударного слоя MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  кинетический ТВУС) и рассматривающий объект обтекания из разряда заостренных тел (острый круговой конус).

Кинетическая модель ТВУС, построенная на основе полных 13-моментных уравнений кинетической теории газов, была сформулирована в [9] (см. также [10, 11]) для многоатомных (молекулярных) газов (неравновесность по внутренним и поступательным степеням свободы); позднее, для случая одноатомного газа (поступательная неравновесность), MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  на основе кинетических, так называемых, 13-моментных уравнений Грэда MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  в [12, 13].

Побудительным мотивом к использованию моментной модели в качестве газокинетической основы анализа гиперзвуковых течений разреженного газа в ТВУС можно полагать наличие у данной модели такого рода привлекательных качеств, как: модель допускает высокую степень неравновесности течения; имеет навье-стоксовский тип допустимых краевых условий на стенке; потенциально опирается на развитое макроскопическое матобеспечение. Оправдательным соображением применения кинетической моментной модели для описания изучаемого типа течений в ТВУС является позитивный итог сопоставления моментных данных с результатами эксперимента и данными прямого статистического моделирования (DSMC), как в тестовых так и в практических исследованиях ТВУС [13 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 15].

Уравнения гиперзвукового кинетического ТВУС около нетонких осесимметричных тел, вращающихся вокруг оси, для случая многоатомного газа, согласно [3], имеют следующий вид:

rρu x + rρv y =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacqGHci ITcaWGYbGaeqyWdiNaamyDaaqaaiabgkGi2kaadIhaaaGaey4kaSYa aSaaaeaacqGHciITcaWGYbGaeqyWdiNaamODaaqaaiabgkGi2kaadM haaaGaeyypa0JaaGimaaaa@4950@ , ρu u x +ρv u y ρ w 2 1 r dr dx + p 12 y =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdiNaamyDam aalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaadIhaaaGaey4kaSIa eqyWdiNaamODamaalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaadM haaaGaeyOeI0IaeqyWdiNaam4DamaaCaaabeWcbaGaaGOmaaaakmaa laaabaGaaGymaaqaaiaadkhaaaWaaSaaaeaacaWGKbGaamOCaaqaai aadsgacaWG4baaaiabgUcaRmaalaaabaGaeyOaIyRaamiCamaaBaaa leaacaaIXaGaaGOmaaGcbeaaaeaacqGHciITcaWG5baaaiabg2da9i aaicdaaaa@5AE8@

p 12 = 1 Re P 22 p μ u y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyOeI0IaamiCam aaBaaaleaacaaIXaGaaGOmaaGcbeaacqGH9aqpdaWcaaqaaiaaigda aeaaciGGsbGaaiyzaaaadaWcaaqaaiaadcfadaWgaaWcbaGaaGOmai aaikdaaeqaaaGcbaGaamiCaaaacqaH8oqBdaWcaaqaaiabgkGi2kaa dwhaaeaacqGHciITcaWG5baaaaaa@48CB@ , P 22 y ρ u 2 R 1 ρ w 2 R 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacqGHci ITcaWGqbWaaSbaaSqaaiaaikdacaaIYaaakeqaaaqaaiabgkGi2kaa dMhaaaGaeyOeI0YaaSaaaeaacqaHbpGCcaWG1bWaaWbaaeqaleaaca aIYaaaaaGcbaGaamOuamaaBaaaleaacaaIXaaakeqaaaaacqGHsisl daWcaaqaaiabeg8aYjaadEhadaahaaqabSqaaiaaikdaaaaakeaaca WGsbWaaSbaaSqaaiaaikdaaOqabaaaaiabg2da9iaaicdaaaa@4C9B@

ρu w x +ρv w y +ρuw 1 r dr dx + p 32 y =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdiNaamyDam aalaaabaGaeyOaIyRaam4DaaqaaiabgkGi2kaadIhaaaGaey4kaSIa eqyWdiNaamODamaalaaabaGaeyOaIyRaam4DaaqaaiabgkGi2kaadM haaaGaey4kaSIaeqyWdiNaamyDaiaadEhadaWcaaqaaiaaigdaaeaa caWGYbaaamaalaaabaGaamizaiaadkhaaeaacaWGKbGaamiEaaaacq GHRaWkdaWcaaqaaiabgkGi2kaadchadaWgaaWcbaGaaG4maiaaikda aeqaaaGcbaGaeyOaIyRaamyEaaaacqGH9aqpcaaIWaaaaa@5AEA@  (1.1)

p 32 = 1 Re P 22 p μ w y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyOeI0IaamiCam aaBaaaleaacaaIZaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaigda aeaaciGGsbGaaiyzaaaadaWcaaqaaiaadcfadaWgaaWcbaGaaGOmai aaikdaaeqaaaGcbaGaamiCaaaacqaH8oqBdaWcaaqaaiabgkGi2kaa dEhaaeaacqGHciITcaWG5baaaaaa@48CF@ , ρu H x +ρv H y + y q 2 +u p 12 +w p 32 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdiNaamyDam aalaaabaGaeyOaIyRaamisaaqaaiabgkGi2kaadIhaaaGaey4kaSIa eqyWdiNaamODamaalaaabaGaeyOaIyRaamisaaqaaiabgkGi2kaadM haaaGaey4kaSYaaSaaaeaacqGHciITaeaacqGHciITcaWG5baaamaa bmaabaGaamyCamaaBaaaleaacaaIYaaabeaakiabgUcaRiaadwhaca WGWbWaaSbaaSqaaiaaigdacaaIYaaabeaakiabgUcaRiaadEhacaWG WbWaaSbaaSqaaiaaiodacaaIYaaabeaaaOGaayjkaiaawMcaaiabg2 da9iaaicdaaaa@5A29@

q 2 = 1 RePr P 22 p μ h y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyOeI0IaamyCam aaBaaaleaacaaIYaaabeaakiabg2da9maalaaabaGaaGymaaqaaiGa ckfacaGGLbGaciiuaiaackhaaaWaaSaaaeaacaWGqbWaaSbaaSqaai aaikdacaaIYaaabeaaaOqaaiaadchaaaGaeqiVd02aaSaaaeaacqGH ciITcaWGObaabaGaeyOaIyRaamyEaaaaaaa@49D0@

p=2ερh MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCaiabg2da9i aaikdacqaH1oqzcqaHbpGCcaWGObaaaa@3EA2@ , μ=μ h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiVd0Maeyypa0 JaeqiVd02aaeWaaeaacaWGObaacaGLOaGaayzkaaaaaa@3E7F@ , H=h+ u 2 + w 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaiabg2da9i aadIgacqGHRaWkdaWcaaqaaiaadwhadaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaWG3bWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaaaa a@40C3@

p P 22 =1+ 2 3α 1 Re μ p u y 2 + 2 3α 1 Re μ p w y 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGWb aabaGaamiuamaaBaaaleaacaaIYaGaaGOmaaqabaaaaOGaeyypa0Ja aGymaiabgUcaRmaalaaabaGaaGOmaaqaaiaaiodacqaHXoqyaaWaae WaaeaadaWcaaqaaiaaigdaaeaaciGGsbGaaiyzaaaadaWcaaqaaiab eY7aTbqaaiaadchaaaWaaSaaaeaacqGHciITcaWG1baabaGaeyOaIy RaamyEaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGH RaWkdaWcaaqaaiaaikdaaeaacaaIZaGaeqySdegaamaabmaabaWaaS aaaeaacaaIXaaabaGaciOuaiaacwgaaaWaaSaaaeaacqaH8oqBaeaa caWGWbaaamaalaaabaGaeyOaIyRaam4DaaqaaiabgkGi2kaadMhaaa aacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@5E1B@

Условия на внешней границе ударного слоя y e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyEamaaBaaale aacaWGLbaabeaaaaa@39AC@  (т.е. при y= y e x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyEaiabg2da9i aadMhadaWgaaWcbaGaamyzaaqabaGcdaqadaqaaiaadIhaaiaawIca caGLPaaaaaa@3E3F@ , где y e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyEamaaBaaale aacaWGLbaabeaaaaa@39AC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  неизвестная, подлежащая определению):

ρv= ρ v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdiNaamODai abg2da9iabeg8aYnaaBaaaleaacqGHEisPaeqaaOGaamODamaaBaaa leaacqGHEisPaeqaaaaa@4157@ , ρ v u u + p 12 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiabg6HiLcqabaGccaWG2bWaaSbaaSqaaiabg6HiLcqabaGcdaqa daqaaiaadwhacqGHsislcaWG1bWaaSbaaSqaaiabg6HiLcqabaaaki aawIcacaGLPaaacqGHRaWkcaWGWbWaaSbaaSqaaiaaigdacaaIYaaa beaakiabg2da9iaaicdaaaa@48F6@

P 22 = ρ v 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaaIYaGaaGOmaaqabaGccqGH9aqpcqaHbpGCdaWgaaWcbaGaeyOh IukabeaakiaadAhadaqhaaWcbaGaeyOhIukabaGaaGOmaaaaaaa@41DC@ , ρ v w+ p 32 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiabg6HiLcqabaGccaWG2bWaaSbaaSqaaiabg6HiLcqabaGccaWG 3bGaey4kaSIaamiCamaaBaaaleaacaaIZaGaaGOmaaqabaGccqGH9a qpcaaIWaaaaa@43E3@  (1.2)

ρ v H H + q 2 +u p 12 +w p 32 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiabg6HiLcqabaGccaWG2bWaaSbaaSqaaiabg6HiLcqabaGcdaqa daqaaiaadIeacqGHsislcaWGibWaaSbaaSqaaiabg6HiLcqabaaaki aawIcacaGLPaaacqGHRaWkcaWGXbWaaSbaaSqaaiaaikdaaeqaaOGa ey4kaSIaamyDaiaadchadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaey 4kaSIaam4DaiaadchadaWgaaWcbaGaaG4maiaaikdaaeqaaOGaeyyp a0JaaGimaaaa@50E2@

Условия на поверхности тела (т.е. при y=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyEaiabg2da9i aaicdaaaa@3A55@  ):

u=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyDaiabg2da9i aaicdaaaa@3A52@ , w=ωr MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Daiabg2da9i abeM8a3jaadkhaaaa@3C5E@ , H= H w MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaiabg2da9i aadIeadaWgaaWcbaGaam4Daaqabaaaaa@3B60@  (1.3)

Обезразмеривание переменных задачи:

u= u * U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyDaiabg2da9m aalaaabaGaamyDamaaCaaaleqabaGaaiOkaaaaaOqaaiaadwfadaqh aaWcbaGaeyOhIukabaGaaiOkaaaaaaaaaa@3EAC@ , v= v * U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamODaiabg2da9m aalaaabaGaamODamaaCaaaleqabaGaaiOkaaaaaOqaaiaadwfadaqh aaWcbaGaeyOhIukabaGaaiOkaaaaaaaaaa@3EAE@ , w= w * U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Daiabg2da9m aalaaabaGaam4DamaaCaaaleqabaGaaiOkaaaaaOqaaiaadwfadaqh aaWcbaGaeyOhIukabaGaaiOkaaaaaaaaaa@3EB0@ , H= H * U * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaiabg2da9m aalaaabaGaamisamaaCaaaleqabaGaaiOkaaaaaOqaaiaadwfadaqh aaWcbaGaeyOhIukabaGaaiOkaaaakmaaCaaaleqabaWaaWbaaWqabe aacaaIYaaaaaaaaaaaaa@3F73@ , p= p * ρ * U * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCaiabg2da9m aalaaabaGaamiCamaaCaaaleqabaGaaiOkaaaaaOqaaiabeg8aYnaa DaaaleaacqGHEisPaeaacaGGQaaaaOGaamyvamaaDaaaleaacqGHEi sPaeaacaGGQaaaaOWaaWbaaSqabeaadaahaaadbeqaaiaaikdaaaaa aaaaaaa@43D9@ , h= h * U * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAaiabg2da9m aalaaabaGaamiAamaaCaaaleqabaGaaiOkaaaaaOqaaiaadwfadaqh aaWcbaGaeyOhIukabaGaaiOkaaaakmaaCaaaleqabaWaaWbaaWqabe aacaaIYaaaaaaaaaaaaa@3FB3@ , T= T * U * 2 / c p * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivaiabg2da9m aalaaabaGaamivamaaCaaaleqabaGaaiOkaaaaaOqaamaabmaabaGa amyvamaaDaaaleaacqGHEisPaeaacaGGQaaaaOWaaWbaaSqabeaada ahaaadbeqaaiaaikdaaaaaaOGaaGzaVlaac+cacaWGJbWaa0baaSqa aiaadchaaeaacaGGQaaaaaGccaGLOaGaayzkaaaaaaaa@461D@ , x= x * L * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaiabg2da9m aalaaabaGaamiEamaaCaaaleqabaGaaiOkaaaaaOqaaiaadYeadaah aaWcbeqaaiaacQcaaaaaaaaa@3D38@ , y= y * L * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyEaiabg2da9m aalaaabaGaamyEamaaCaaaleqabaGaaiOkaaaaaOqaaiaadYeadaah aaWcbeqaaiaacQcaaaaaaaaa@3D3A@ , ρ= ρ * ρ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdiNaeyypa0 ZaaSaaaeaacqaHbpGCdaahaaWcbeqaaiaacQcaaaaakeaacqaHbpGC daqhaaWcbaGaeyOhIukabaGaaiOkaaaaaaaaaa@411E@ , μ= μ * μ 0 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiVd0Maeyypa0 ZaaSqaaeaacqaH8oqBdaahaaWcbeqaaiaacQcaaaaakeaacqaH8oqB daqhaaWcbaGaaGimaaqaaiaacQcaaaaaaaaa@404A@ , r= r * L * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCaiabg2da9m aalaaabaGaamOCamaaCaaaleqabaGaaiOkaaaaaOqaaiaadYeadaah aaWcbeqaaiaacQcaaaaaaaaa@3D2C@ , P 22 = P 22 * ρ * U * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaaIYaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaadcfadaqhaaWc baGaaGOmaiaaikdaaeaacaGGQaaaaaGcbaGaeqyWdi3aa0baaSqaai abg6HiLcqaaiaacQcaaaGccaWGvbWaa0baaSqaaiabg6HiLcqaaiaa cQcaaaGcdaahaaWcbeqaamaaCaaameqabaGaaGOmaaaaaaaaaaaa@46BF@ , R 1 = R 1 * L * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaIXaaabeaakiabg2da9maalaaabaGaamOuamaaDaaaleaacaaI XaaabaGaaiOkaaaaaOqaaiaadYeadaahaaWcbeqaaiaacQcaaaaaaa aa@3E99@ , R 2 = R 2 * L * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaIYaaabeaakiabg2da9maalaaabaGaamOuamaaDaaaleaacaaI YaaabaGaaiOkaaaaaOqaaiaadYeadaahaaWcbeqaaiaacQcaaaaaaa aa@3E9B@ .

Для представления задачи ТВУС в (1.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  (1.3) используется связанная с обтекаемой поверхностью ортогональная система координат, обычно применяемая в теории пограничного слоя, т.е. продольная координата x здесь отсчитывается вдоль прямолинейной образующей поверхности (конуса) от острого носка, поперечная координата y отсчитывается вдоль нормали к поверхности тела.

Список основных обозначений:

u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyDaaaa@3892@ , v MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamODaaaa@3892@ , w MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Daaaa@3893@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  компоненты скорости течения в продольном MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaaaa@3895@ , поперечном MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyEaaaa@3895@  и азимутальном направлениях соответственно;

ω MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdChaaa@3965@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  угловая скорость вращения конуса;

h MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAaaaa@3885@ , H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaaaa@3864@ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  статическая и полная энтальпии соответственно;

Re= U * L * ρ * / μ 0 * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaciOuaiaacwgacq GH9aqpcaWGvbWaa0baaSqaaiabg6HiLcqaaiaacQcaaaGccaWGmbWa aWbaaSqabeaacaGGQaaaaOGaeqyWdi3aa0baaSqaaiabg6HiLcqaai aacQcaaaGccaGGVaGaeqiVd02aa0baaSqaaiaaicdaaeaacaGGQaaa aaaa@4759@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  число Рейнольдса; Pr= μ * c p * / λ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaciiuaiaackhacq GH9aqpcqaH8oqBdaahaaWcbeqaaiaacQcaaaGccaWGJbWaa0baaSqa aiaadchaaeaacaGGQaaaaOGaai4laiabeU7aSnaaCaaaleqabaGaai Okaaaaaaa@4309@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  число Прандтля;

L * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamitamaaCaaale qabaGaaiOkaaaaaaa@3944@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  характерный линейный размер; U * , ρ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyvamaaDaaale aacqGHEisPaeaacaGGQaaaaOGaaiilaiaaykW7caaMc8UaeqyWdi3a a0baaSqaaiabg6HiLcqaaiaacQcaaaaaaa@429A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  скорость и плотность в набегающем невозмущенном потоке; M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamytamaaBaaale aacqGHEisPaeqaaaaa@3A06@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  число Маха набегающего потока;

p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCaaaa@388C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  давление; ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdihaaa@3957@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  плотность; T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivaaaa@3871@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  температура; T 0 * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaDaaale aacaaIWaaabaGaaiOkaaaaaaa@3A06@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  температура торможения; γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4SdCgaaa@393E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  отношение удельных теплоемкостей, т.е. γ= c p * / c v * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4SdCMaeyypa0 Jaam4yamaaDaaaleaacaWGWbaabaGaaiOkaaaakiaac+cacaWGJbWa a0baaSqaaiaadAhaaeaacaGGQaaaaaaa@4077@ , где c p * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaDaaale aacaWGWbaabaGaaiOkaaaaaaa@3A4F@  и c v * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4yamaaDaaale aacaWG2baabaGaaiOkaaaaaaa@3A55@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  удельные теплоемкости газа при постоянном давлении и при постоянном объеме соответственно; ε= γ1 /2γ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyTduMaeyypa0 ZaaeWaaeaacqaHZoWzcqGHsislcaaIXaaacaGLOaGaayzkaaGaai4l aiaaikdacqaHZoWzaaa@4233@ ;

μ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiVd02aaWbaaS qabeaacaGGQaaaaaaa@3A28@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  коэффициента вязкости; μ 0 * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiVd02aa0baaS qaaiaaicdaaeaacaGGQaaaaaaa@3AE2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  значение коэффициента вязкости μ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiVd02aaWbaaS qabeaacaGGQaaaaaaa@3A28@  при температуре торможения T 0 * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaDaaale aacaaIWaaabaGaaiOkaaaaaaa@3A06@ ; λ * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4UdW2aaWbaaS qabeaacaGGQaaaaaaa@3A26@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  коэффициент теплопроводности;

α MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqySdegaaa@3937@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  отношение времен релаксации при упругих ( τ el MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiXdq3aaSbaaS qaaiaadwgacaWGSbaabeaaaaa@3B64@  ) и неупругих ( τ in MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiXdq3aaSbaaS qaaiaadMgacaWGUbaabeaaaaa@3B6A@  ) столкновениях молекул газа, α= τ el / τ in =α T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqySdeMaeyypa0 JaeqiXdq3aaSbaaSqaaiaadwgacaWGSbaabeaakiaac+cacqaHepaD daWgaaWcbaGaamyAaiaad6gaaeqaaOGaeyypa0JaeqySde2aaeWaae aacaWGubaacaGLOaGaayzkaaaaaa@47A9@ ;

R 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaIXaaabeaaaaa@3956@ , R 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaIYaaabeaaaaa@3957@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  радиусы кривизны поверхности конуса в продольном и азимутальном направлениях соответственно ( R 1 1 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaaIXaaabaGaeyOeI0IaaGymaaaakiabg2da9iaaicdaaaa@3CC9@  );

r L * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCaiaadYeada ahaaWcbeqaaiaacQcaaaaaaa@3A3A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  расстояние от оси симметрии конуса до его поверхности;

P 22 =p+ p 22 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaaIYaGaaGOmaaqabaGccqGH9aqpcaWGWbGaey4kaSIaamiCamaa BaaaleaacaaIYaGaaGOmaaqabaaaaa@3F91@ , где p 22 ρ * U * 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaaIYaGaaGOmaaqabaGccqaHbpGCdaqhaaWcbaGaeyOhIukabaGa aiOkaaaakiaadwfadaqhaaWcbaGaeyOhIukabaGaaiOkaaaakmaaCa aabeqaamaaCaaaleqabaGaaGOmaaaaaaaaaa@428C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  компонента девиаторной части тензора напряжений p ij ρ * U * 2 (i,j,k=1,2,3) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGPbGaamOAaaqabaGccqaHbpGCdaqhaaWcbaGaeyOhIukabaGa aiOkaaaakiaadwfadaqhaaWcbaGaeyOhIukabaGaaiOkaaaakmaaCa aabeqaamaaCaaaleqabaGaaGOmaaaaaaqcLbGacaaMc8UaaGPaVRGa aGPaVlaacIcacaWGPbGaaiilaiaadQgacaGGSaGaam4AaiaaykW7cq GH9aqpcaaMc8UaaGymaiaacYcacaaMc8UaaGOmaiaacYcacaaMc8Ua aG4maiaacMcaaaa@5858@  при индексах 1, 2 и 3, ассоциируемых с продольным, поперечным и азимутальным направлениями соответственно; q i ρ * U * 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCamaaBaaale aacaWGPbaabeaakiabeg8aYnaaDaaaleaacqGHEisPaeaacaGGQaaa aOGaamyvamaaDaaaleaacqGHEisPaeaacaGGQaaaaOWaaWbaaeqaba WaaWbaaSqabeaacaaIZaaaaaaaaaa@4204@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор теплового потока.

Индексы описывают: « e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyzaaaa@3882@  » MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  внешнюю границу ТВУС, « w MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Daaaa@3894@  » MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  стенку, « MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyOhIukaaa@3909@  » MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  набегающий (невозмущенный) поток; верхний индекс MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqcLbuacqGHxiIkaa a@3935@  относится к размерным величинам.

Анализ течения в задаче кинетического ТВУС около вращающегося конуса строится на использовании переменных Мизеса ( x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaaaa@3895@ , ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiYdKhaaa@3966@  ), где ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiYdKhaaa@3966@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  функция тока ( ψ= ψ * / L * ρ * U * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiYdKNaeyypa0 JaeqiYdK3aaWbaaSqabeaacaGGQaaaaOGaai4laiaadYeadaahaaWc beqaaiaacQcaaaGccqaHbpGCdaqhaaWcbaGaeyOhIukabaGaaiOkaa aakiaadwfadaqhaaWcbaGaeyOhIukabaGaaiOkaaaaaaa@46C4@  ), которая вводится соотношениями:

rρu= ψ y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCaiabeg8aYj aadwhacqGH9aqpdaWcaaqaaiabgkGi2kabeI8a5bqaaiabgkGi2kaa dMhaaaaaaa@41F7@ , rρv= ψ x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCaiabeg8aYj aadAhacqGH9aqpcqGHsisldaWcaaqaaiabgkGi2kabeI8a5bqaaiab gkGi2kaadIhaaaaaaa@42E4@  (1.4)

2. Регуляризующее преобразование

Течение в ТВУС около заостренных тел имеет существенную особенность (в окрестности острого носка) и является в высокой степени нерегулярным (причина: головной скачок непосредственно присоединен к носку). Вследствие чего применяемый на практике аппарат исследования ТВУС-течений, ориентированный на изучение обтекания затупленных тел, (прежде всего из-за свойств используемых там переменных) непригоден в случае тел с головным заострением.

Для преодоления указанной существенной особенности предлагается регуляризующее преобразование переменных следующего вида:

ξ= x 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaeyypa0 JaamiEamaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaaa@3DB5@ , η= ψ 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGMaeyypa0 JaeqiYdK3aaWbaaSqabeaadaWcgaqaaiaaigdaaeaacaaIYaaaaaaa aaa@3DD2@

u ˜ = u r 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmyDayaaiaGaey ypa0ZaaSaaaeaacaWG1baabaGaamOCamaaCaaaleqabaGaaGymaiaa c+cacaaIYaaaaaaaaaa@3DFF@ , H ˜ = H H w0 r 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmisayaaiaGaey ypa0ZaaSaaaeaacaWGibGaeyOeI0IaamisamaaBaaaleaacaWG3bGa aGimaaqabaaakeaacaWGYbWaaWbaaSqabeaacaaIXaGaai4laiaaik daaaaaaaaa@414B@ , w ˜ = w w w0 r 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabm4DayaaiaGaey ypa0ZaaSaaaeaacaWG3bGaeyOeI0Iaam4DamaaBaaaleaacaWG3bGa aGimaaqabaaakeaacaWGYbWaaWbaaSqabeaacaaIXaGaai4laiaaik daaaaaaaaa@41D8@ , (2.1)

где (см. (1.4). о величине ψ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiYdKhaaa@3966@  ):

ψ ˜ =ψ/ r 2 /2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGafqiYdKNbaGaacq GH9aqpcqaHipqEcaGGVaWaaeWaaeaacaWGYbWaaWbaaeqaleaacaaI YaaaaOGaaGzaVlaac+cacaaMi8UaaGOmaaGaayjkaiaawMcaaaaa@44F8@ ,

H w0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisamaaBaaale aacaWG3bGaaGimaaGcbeaaaaa@3A51@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  значение величины H MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaaaa@3865@  при x=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaiabg2da9i aaicdaaaa@3A55@  на стенке η=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGMaeyypa0 JaaGimaaaa@3B04@ , w w0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4DamaaBaaale aacaWG3bGaaGimaaGcbeaaaaa@3A80@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  значение w MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Daaaa@3894@  при x=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaiabg2da9i aaicdaaaa@3A55@  на стенке η=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGMaeyypa0 JaaGimaaaa@3B04@ ;

ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGhaaa@395B@ , η MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGgaaa@3944@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  новые независимые переменные задачи (соответственно продольная переменная ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGhaaa@395B@  и поперечная η MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGgaaa@3944@  ); областью изменения ( ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGhaaa@395B@ , η MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGgaaa@3944@  ) является: ξ0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdGNaeyyzIm RaaGimaaaa@3BDB@ , 0η1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGimaiabgsMiJk abeE7aOjabgsMiJkaaigdaaaa@3E23@ .

Задача ТВУС около острого конуса, представленная в переменных (2.1), является регулярной.

3. Корреляция

( x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaaaa@3895@ , η MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGgaaa@3944@  )-интерпретация кинетического ТВУС позволяет в рамках структуры последнего сформулировать следующего вида замкнутую краевую задачу для вычисления величин u ˜ , w ˜ , H ˜ , P 22 k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaaceWG1b GbaGaacaGGSaGaaGjbVlqadEhagaacaiaacYcacaaMe8Uabmisayaa iaGaaiilaiaaysW7caWGqbWaaSbaaSqaaiaaikdacaaIYaaabeaaaO GaayjkaiaawMcaamaaBaaaleaacaWGRbaabeaaaaa@4666@ , p 12 k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWGWb WaaSbaaSqaaiaaigdacaaIYaaabeaaaOGaayjkaiaawMcaamaaBaaa leaacaWGRbaabeaaaaa@3CDF@ , p 32 k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWGWb WaaSbaaSqaaiaaiodacaaIYaaabeaaaOGaayjkaiaawMcaamaaBaaa leaacaWGRbaabeaaaaa@3CE1@ , q 2 k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWGXb WaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaWaaSbaaSqaaiaa dUgaaeqaaaaa@3C25@ :

уравнения:

u x 2 1 r dr dx η u η 1 u w 2 1 r dr dx + p 12 η =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacqGHci ITcaWG1baabaGaeyOaIyRaamiEaaaacqGHsislcaaIYaWaaSaaaeaa caaIXaaabaGaamOCaaaadaWcaaqaaiaadsgacaWGYbaabaGaamizai aadIhaaaGaeq4TdG2aaSaaaeaacqGHciITcaWG1baabaGaeyOaIyRa eq4TdGgaaiabgkHiTmaalaaabaGaaGymaaqaaiaadwhaaaGaam4Dam aaCaaaleqabaGaaGOmaaaakmaalaaabaGaaGymaaqaaiaadkhaaaWa aSaaaeaacaWGKbGaamOCaaqaaiaadsgacaWG4baaaiabgUcaRmaala aabaGaeyOaIyRaamiCamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaa cqGHciITcqaH3oaAaaGaeyypa0JaaGimaaaa@5EDF@

p 12 = 1 Re P 22 μ ρ p u u η 2 r 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyOeI0IaamiCam aaBaaaleaacaaIXaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaigda aeaaciGGsbGaaiyzaaaacaWGqbWaaSbaaSqaaiaaikdacaaIYaaabe aakiabeY7aTjaaykW7daWcaaqaaiabeg8aYbqaaiaadchaaaGaamyD amaalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kabeE7aObaadaWcaa qaaiaaikdaaeaacaWGYbWaaWbaaSqabeaacaaIZaaaaaaaaaa@506B@

2 1 u 2 R 1 + 2 1 w 2 R 2 = u r P 22 η MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmamaaCaaale qabaGaeyOeI0IaaGymaaaakmaalaaabaGaamyDamaaCaaaleqabaGa aGOmaaaaaOqaaiaadkfadaWgaaWcbaGaaGymaaqabaaaaOGaey4kaS IaaGOmamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaalaaabaGaam4D amaaCaaaleqabaGaaGOmaaaaaOqaaiaadkfadaWgaaWcbaGaaGOmaa qabaaaaOGaeyypa0ZaaSaaaeaacaWG1baabaGaamOCaaaadaWcaaqa aiabgkGi2kaadcfadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaey OaIyRaeq4TdGgaaaaa@4F4F@

w x 2 1 r dr dx η w η +w 1 r dr dx + p 32 η =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacqGHci ITcaWG3baabaGaeyOaIyRaamiEaaaacqGHsislcaaIYaWaaSaaaeaa caaIXaaabaGaamOCaaaadaWcaaqaaiaadsgacaWGYbaabaGaamizai aadIhaaaGaeq4TdG2aaSaaaeaacqGHciITcaWG3baabaGaeyOaIyRa eq4TdGgaaiaaykW7caaMc8Uaey4kaSIaam4DamaalaaabaGaaGymaa qaaiaadkhaaaWaaSaaaeaacaWGKbGaamOCaaqaaiaadsgacaWG4baa aiabgUcaRmaalaaabaGaeyOaIyRaamiCamaaBaaaleaacaaIZaGaaG OmaaqabaaakeaacqGHciITcqaH3oaAaaGaeyypa0JaaGimaiaaykW7 aaa@60C3@

p 32 = 1 Re P 22 μ ρ p u w η 2 r 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyOeI0IaamiCam aaBaaaleaacaaIZaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiaaigda aeaaciGGsbGaaiyzaaaacaWGqbWaaSbaaSqaaiaaikdacaaIYaaabe aakiabeY7aTnaalaaabaGaeqyWdihabaGaamiCaaaacaWG1bWaaSaa aeaacqGHciITcaWG3baabaGaeyOaIyRaeq4TdGgaamaalaaabaGaaG OmaaqaaiaadkhadaahaaWcbeqaaiaaiodaaaaaaaaa@4EE4@

r H x 2 dr dx η H η + η q 2 +u p 12 +w p 32 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaalaaaba GaeyOaIyRaamisaaqaaiabgkGi2kaadIhaaaGaeyOeI0IaaGOmamaa laaabaGaamizaiaadkhaaeaacaWGKbGaamiEaaaacqaH3oaAdaWcaa qaaiabgkGi2kaadIeaaeaacqGHciITcqaH3oaAaaGaey4kaSIaaGPa VlaaykW7daWcaaqaaiabgkGi2cqaaiabgkGi2kabeE7aObaadaqada qaaiaadghadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG1bGaamiC amaaBaaaleaacaaIXaGaaGOmaaqabaGccqGHRaWkcaWG3bGaamiCam aaBaaaleaacaaIZaGaaGOmaaqabaaakiaawIcacaGLPaaacqGH9aqp caaIWaaaaa@6066@  (3.1)

q 2 = 1 RePr P 22 μ ρ p u h η 2 r 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyOeI0IaamyCam aaBaaaleaacaaIYaaabeaakiabg2da9maalaaabaGaaGymaaqaaiGa ckfacaGGLbGaciiuaiaackhaaaGaamiuamaaBaaaleaacaaIYaGaaG OmaaqabaGccqaH8oqBdaWcaaqaaiabeg8aYbqaaiaadchaaaGaamyD amaalaaabaGaeyOaIyRaamiAaaqaaiabgkGi2kabeE7aObaadaWcaa qaaiaaikdaaeaacaWGYbWaaWbaaSqabeaacaaIZaaaaaaaaaa@4FE5@

p=2ερh; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCaiaaykW7cq GH9aqpcaaMc8UaaGOmaiaaykW7cqaH1oqzcaaMc8UaeqyWdiNaaGPa VlaadIgacaaMc8Uaai4oaaaa@48A3@   μ=μ h ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiVd0MaaGPaVl abg2da9iaaykW7cqaH8oqBcaaMc8+aaeWaaeaacaWGObaacaGLOaGa ayzkaaGaaGPaVlaacUdaaaa@456A@   H=h+ u 2 + w 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaiaaykW7cq GH9aqpcaaMc8UaamiAaiaaykW7cqGHRaWkcaaMc8+aaSaaaeaacaWG 1bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaam4DamaaCaaaleqaba GaaGOmaaaaaOqaaiaaikdaaaaaaa@46F0@

u= u ˜ r 1/2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyDaiabg2da9i qadwhagaacaiaaykW7caWGYbWaaWbaaSqabeaadaWcgaqaaiaaigda aeaacaaIYaaaaaaaaaa@3EDD@ ; w= w r 1/2 + w w0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Daiabg2da9i qadEhagaWeaiaaykW7caWGYbWaaWbaaSqabeaadaWcgaqaaiaaigda aeaacaaIYaaaaaaakiaaykW7cqGHRaWkcaaMc8Uaam4DamaaBaaale aacaWG3bGaaGimaaqabaaaaa@45CC@ ; H= H ˜ r 1/2 + H w0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaiabg2da9i qadIeagaacaiaaykW7caWGYbWaaWbaaSqabeaadaWcgaqaaiaaigda aeaacaaIYaaaaaaakiaaykW7cqGHRaWkcaWGibWaaSbaaSqaaiaadE hacaaIWaaabeaaaaa@43A9@

условия при η=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGMaeyypa0 JaaGimaaaa@3B04@ :

u=0,w=ωr,H= H w MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyDaiabg2da9i aaicdacaaMc8UaaiilaiaaykW7caaMc8Uaam4Daiabg2da9iabeM8a 3jaadkhacaaMc8UaaiilaiaaykW7caaMc8Uaamisaiabg2da9iaadI eadaWgaaWcbaGaam4Daaqabaaaaa@4D82@  (3.2)

условия при η=1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGMaeyypa0 JaaGymaaaa@3B05@ :

ρ v u u + p 12 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiabg6HiLcqabaGccaWG2bWaaSbaaSqaaiabg6HiLcqabaGcdaqa daqaaiaadwhacqGHsislcaWG1bWaaSbaaSqaaiabg6HiLcqabaaaki aawIcacaGLPaaacaaMc8Uaey4kaSIaamiCamaaBaaaleaadaWgaaad baGaaGymaiaaikdaaeqaaaWcbeaakiabg2da9iaaicdaaaa@4AB9@

P 22 = ρ v 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaaIYaGaaGOmaaqabaGccqGH9aqpcqaHbpGCdaWgaaWcbaGaeyOh IukabeaakiaadAhadaqhaaWcbaGaeyOhIukabaGaaGOmaaaaaaa@41DC@  (3.3)

ρ v w+ p 32 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiabg6HiLcqabaGccaWG2bWaaSbaaSqaaiabg6HiLcqabaGccaWG 3bGaaGPaVlabgUcaRiaadchadaWgaaWcbaGaaG4maiaaikdaaeqaaO Gaeyypa0JaaGimaaaa@456D@

ρ v H H + q 2 +u p 12 +w p 32 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdi3aaSbaaS qaaiabg6HiLcqabaGccaWG2bWaaSbaaSqaaiabg6HiLcqabaGcdaqa daqaaiaadIeacqGHsislcaWGibWaaSbaaSqaaiabg6HiLcqabaaaki aawIcacaGLPaaacqGHRaWkcaaMb8UaaGPaVlaaykW7caWGXbWaaSba aSqaaiaaikdaaeqaaOGaey4kaSIaamyDaiaadchadaWgaaWcbaGaaG ymaiaaikdaaeqaaOGaey4kaSIaaGPaVlaadEhacaWGWbWaaSbaaSqa aiaaiodacaaIYaaabeaakiabg2da9iaaicdaaaa@570D@

Точно такой же вид, в таких же ( x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaaaa@3895@ , η MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGgaaa@3944@  )-независимых переменных, имеет краевая задача, описывающая величины u ˜ , w ˜ , H ˜ ,p n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaaceWG1b GbaGaacaGGSaGaaGjbVlqadEhagaacaiaacYcacaaMe8Uabmisayaa iaGaaiilaiaaysW7caWGWbaacaGLOaGaayzkaaWaaSbaaSqaaiaad6 gaaeqaaaaa@44DC@ , p 12 n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWGWb WaaSbaaSqaaiaaigdacaaIYaaabeaaaOGaayjkaiaawMcaamaaBaaa leaacaWGUbaabeaaaaa@3CE2@ , p 32 n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWGWb WaaSbaaSqaaiaaiodacaaIYaaabeaaaOGaayjkaiaawMcaamaaBaaa leaacaWGUbaabeaaaaa@3CE4@ , q 2 n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWGXb WaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaWaaSbaaSqaaiaa d6gaaeqaaaaa@3C28@  ТВУС в рамках модели Навье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Стокса.

Выше, в разд. 3, и далее индекс k относится к кинетическому ТВУС, индекс n относится к ТВУС Навье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Стокса.

Комплексы функций u ˜ , w ˜ , H ˜ , P 22 k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaaceWG1b GbaGaacaGGSaGaaGjbVlqadEhagaacaiaacYcacaaMe8Uabmisayaa iaGaaiilaiaaysW7caWGqbWaaSbaaSqaaiaaikdacaaIYaaabeaaaO GaayjkaiaawMcaamaaBaaaleaacaWGRbaabeaaaaa@4667@ , p 12 k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWGWb WaaSbaaSqaaiaaigdacaaIYaaabeaaaOGaayjkaiaawMcaamaaBaaa leaacaWGRbaabeaaaaa@3CDF@ , p 32 k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWGWb WaaSbaaSqaaiaaiodacaaIYaaabeaaaOGaayjkaiaawMcaamaaBaaa leaacaWGRbaabeaaaaa@3CE1@ , q 2 k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWGXb WaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaWaaSbaaSqaaiaa dUgaaeqaaaaa@3C25@  и u ˜ , w ˜ , H ˜ ,p n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaaceWG1b GbaGaacaGGSaGaaGjbVlqadEhagaacaiaacYcacaaMe8Uabmisayaa iaGaaiilaiaaysW7caWGWbaacaGLOaGaayzkaaWaaSbaaSqaaiaad6 gaaeqaaaaa@44DC@ , p 12 n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWGWb WaaSbaaSqaaiaaigdacaaIYaaabeaaaOGaayjkaiaawMcaamaaBaaa leaacaWGUbaabeaaaaa@3CE2@ , p 32 n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWGWb WaaSbaaSqaaiaaiodacaaIYaaabeaaaOGaayjkaiaawMcaamaaBaaa leaacaWGUbaabeaaaaa@3CE4@ , q 2 n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWGXb WaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaWaaSbaaSqaaiaa d6gaaeqaaaaa@3C28@  являются решением одной и той же замкнутой краевой задачи в независимых переменных ( x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEaaaa@3895@ , η MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGgaaa@3944@  ), связанных с потоком.

Отсюда следует (в условной записи):

u,w,H, P 22 k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWG1b GaaiilaiaaysW7caWG3bGaaiilaiaaysW7caWGibGaaiilaiaaysW7 caWGqbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOGaayjkaiaawMcaam aaBaaaleaacaWGRbaabeaaaaa@463A@  = u,w,H,p n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWG1b GaaiilaiaaysW7caWG3bGaaiilaiaaysW7caWGibGaaiilaiaaysW7 caWGWbaacaGLOaGaayzkaaWaaSbaaSqaaiaad6gaaeqaaaaa@44AF@  (3.4)

P 22 k = p n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaacaWGqb WaaSbaaSqaaiaaikdacaaIYaaabeaaaOGaayjkaiaawMcaamaaBaaa leaacaWGRbaabeaakiabg2da9maabmaabaGaamiCaaGaayjkaiaawM caamaaBaaaleaacaWGUbaabeaaaaa@416D@  (3.5)

p 12 k = p 12 n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qada qadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaigdacaaIYaaapaqa baaak8qacaGLOaGaayzkaaWdamaaBaaaleaapeGaam4AaaWdaeqaaO Wdbiabg2da9maabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaGym aiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaSbaaSqaa8qaca WGUbaapaqabaaaaa@447F@ , p 32 k = p 32 n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qada qadaWdaeaapeGaamiCa8aadaWgaaWcbaWdbiaaiodacaaIYaaapaqa baaak8qacaGLOaGaayzkaaWdamaaBaaaleaapeGaam4AaaWdaeqaaO Wdbiabg2da9maabmaapaqaa8qacaWGWbWdamaaBaaaleaapeGaaG4m aiaaikdaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaSbaaSqaa8qaca WGUbaapaqabaaaaa@4483@ , q 2 k = q 2 n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qada qadaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaaikdaa8aabeaaaOWd biaawIcacaGLPaaapaWaaSbaaSqaa8qacaWGRbaapaqabaGcpeGaey ypa0ZaaeWaa8aabaWdbiaadghapaWaaSbaaSqaa8qacaaIYaaapaqa baaak8qacaGLOaGaayzkaaWdamaaBaaaleaapeGaamOBaaWdaeqaaa aa@430B@  (3.6)

Равенства (3.6) позволяют заключить, что локальные величины напряжения трения на поверхности и нормальный тепловой поток к стенке в обоих (кинетическом и Навье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Стокса) ТВУС-течениях повсеместно совпадают, т.е. и трение и теплообмен на стенке соответственно одинаковы в том и другом случае.

Эта корреляция (подобие, соотнесение) ТВУС-решений очевидным образом (см. (3.4) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (3.6)) позволяет выстраивать решение кинетической задачи ТВУС на базе решения ТВУС-решения Навье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Стокса. Для установления связи кинетического ТВУС-решения, полученного в переменных Мизеса ( x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qaca WG4baaaa@38B5@ , ψ ˜ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qacu aHipqEgaacaaaa@3995@  ), с физическими координатами ( x MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qaca WG4baaaa@38B5@ , y MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qaca WG5baaaa@38B6@  ) следует привлечь обращенное уравнение, вводящие поперечную переменную Мизеса (см. (1.4)), т.е. уравнение вида:

y η = 2 ρ k u ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qada WcaaWdaeaapeGaeyOaIyRaamyEaaWdaeaapeGaeyOaIyRaeq4TdGga aiabg2da9maabmaapaqaa8qacaaIYaGaeqyWdi3damaaBaaaleaape Gaam4AaaWdaeqaaOWdbiqadwhagaacaaGaayjkaiaawMcaa8aadaah aaWcbeqaa8qacqGHsislcaaIXaaaaaaa@4707@ , y η=0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qaca WG5bWaaeWaa8aabaWdbiabeE7aOjabg2da9iaaicdaaiaawIcacaGL PaaacqGH9aqpcaaIWaaaaa@3F8A@

4. Острый носок

Использование преобразования (2.1) кинетической задачи ТВУС дает возможность получить ее предельную ( ξ0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qacq aH+oaEcqGHsgIRcaaIWaaaaa@3C22@  ) форму, описывающую течение вблизи острого носка конуса.

Это будут:

система уравнений:

η 1 Re μ P 22 ρ p u ˜ u ˜ η =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qada WcaaWdaeaapeGaeyOaIy7daiaayEW7aeaapeGaeyOaIyRaeq4TdGga amaalaaapaqaa8qacaaIXaaapaqaa8qaciGGsbGaaiyzaaaacqaH8o qBcaWGqbWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qadaWa daWdaeaapeWaaSaaa8aabaWdbiabeg8aYbWdaeaapeGaamiCaaaaai aawUfacaGLDbaaceWG1bGbaGaadaWcaaWdaeaapeGaeyOaIyRabmyD ayaaiaaapaqaa8qacqGHciITcqaH3oaAaaWdaiaayEW7peGaeyypa0 ZdaiaayEW7peGaaGimaaaa@5659@

P 22 η =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qada WcaaWdaeaapeGaeyOaIyRaamiua8aadaWgaaWcbaWdbiaaikdacaaI YaaapaqabaaakeaapeGaeyOaIyRaeq4TdGgaa8aacaaMh8+dbiabg2 da98aacaaMh8+dbiaaicdaaaa@443E@ (4.1)

η 1 Re μ P 22 ρ p u ˜ w ˜ η =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qada WcaaWdaeaapeGaeyOaIy7daiaayEW7aeaapeGaeyOaIyRaeq4TdGga amaalaaapaqaa8qacaaIXaaapaqaa8qaciGGsbGaaiyzaaaacqaH8o qBcaWGqbWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qadaWa daWdaeaapeWaaSaaa8aabaWdbiabeg8aYbWdaeaapeGaamiCaaaaai aawUfacaGLDbaaceWG1bGbaGaadaWcaaWdaeaapeGaeyOaIyRabm4D ayaaiaaapaqaa8qacqGHciITcqaH3oaAaaWdaiaayEW7peGaeyypa0 ZdaiaayEW7peGaaGimaaaa@565B@

η 1 RePr μ P 22 ρ p u ˜ H ˜ η =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qada WcaaWdaeaapeGaeyOaIylapaqaa8qacqGHciITcqaH3oaAaaWaaSaa a8aabaWdbiaaigdaa8aabaWdbiGackfacaGGLbWdaiaayEW7peGaci iuaiaackhaaaGaeqiVd0Maamiua8aadaWgaaWcbaWdbiaaikdacaaI YaaapaqabaGcpeWaamWaa8aabaWdbmaalaaapaqaa8qacqaHbpGCa8 aabaWdbiaadchaaaaacaGLBbGaayzxaaGabmyDayaaiaWaaSaaa8aa baWdbiabgkGi2kqadIeagaacaaWdaeaapeGaeyOaIyRaeq4TdGgaai abg2da9iaaicdaaaa@54B9@

1=2ε ρ p h MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qaca aIXaGaeyypa0ZdaiaayEW7peGaaGOma8aacaaMh8+dbiabew7aL9aa caaMh8+dbmaadmaapaqaa8qadaWcaaWdaeaapeGaeqyWdihapaqaa8 qacaWGWbaaaaGaay5waiaaw2faa8aacaaMh8+dbiaadIgaaaa@4899@ ; μ=μ h MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qacq aH8oqBpaGaaG5bV=qacqGH9aqppaGaaG5bV=qacqaH8oqBpaGaaG5b V=qadaqadaWdaeaapeGaamiAaaGaayjkaiaawMcaaaaa@43CC@ ; h= H w0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qaca WGObGaeyypa0Jaamisa8aadaWgaaWcbaWdbiaadEhacaaIWaaapaqa baaaaa@3C88@

условия на внешней границе ТВУС, т.е. при η=1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qacq aH3oaAcqGH9aqpcaaIXaaaaa@3B25@ :

ρ v u = 1 Re μ P 22 ρ p u ˜ u ˜ η MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qacq aHbpGCpaWaaSbaaSqaa8qacqGHEisPa8aabeaak8qacaWG2bWdamaa BaaaleaapeGaeyOhIukapaqabaGcpeGaamyDa8aadaWgaaWcbaWdbi abg6HiLcWdaeqaaOGaaG5bV=qacqGH9aqpdaWcaaWdaeaapeGaaGym aaWdaeaapeGaciOuaiaacwgaaaGaeqiVd0Maamiua8aadaWgaaWcba WdbiaaikdacaaIYaaapaqabaGcpeWaamWaa8aabaWdbmaalaaapaqa a8qacqaHbpGCa8aabaWdbiaadchaaaaacaGLBbGaayzxaaGabmyDay aaiaWaaSaaa8aabaWdbiabgkGi2+aacaaMh8+dbiqadwhagaacaaWd aeaapeGaeyOaIyRaeq4TdGgaaaaa@588E@

P 22 = ρ v 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qaca WGqbWdamaaBaaaleaapeGaaGOmaiaaikdaa8aabeaak8qacqGH9aqp cqaHbpGCpaWaaSbaaSqaa8qacqGHEisPa8aabeaak8qacaWG2bWdam aaDaaaleaapeGaeyOhIukapaqaa8qacaaIYaaaaaaa@42B7@  (4.2)

ρ v w w0 = 1 Re μ P 22 ρ p u ˜ w ˜ η MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qacq aHbpGCpaWaaSbaaSqaa8qacqGHEisPa8aabeaak8qacaWG2bWdamaa BaaaleaapeGaeyOhIukapaqabaGcpeGaam4Da8aadaWgaaWcbaWdbi aadEhacaaIWaaapaqabaGccaaMh8+dbiabg2da9maalaaapaqaa8qa caaIXaaapaqaa8qaciGGsbGaaiyzaaaacqaH8oqBcaWGqbWdamaaBa aaleaapeGaaGOmaiaaikdaa8aabeaak8qadaWadaWdaeaapeWaaSaa a8aabaWdbiabeg8aYbWdaeaapeGaamiCaaaaaiaawUfacaGLDbaace WG1bGbaGaadaWcaaWdaeaapeGaeyOaIy7daiaayEW7peGabm4Dayaa iaaapaqaa8qacqGHciITcqaH3oaAaaaaaa@58D7@

ρ v H w0 H = 1 RePr μ P 22 ρ p u ˜ H ˜ η MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qacq aHbpGCpaWaaSbaaSqaa8qacqGHEisPa8aabeaak8qacaWG2bWdamaa BaaaleaapeGaeyOhIukapaqabaGcpeWaaeWaa8aabaWdbiaadIeapa WaaSbaaSqaa8qacaWG3bGaaGimaaWdaeqaaOWdbiabgkHiTiaadIea paWaaSbaaSqaa8qacqGHEisPa8aabeaaaOWdbiaawIcacaGLPaaacq GH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaapeGaciOuaiaacwgaciGG qbGaaiOCaaaacqaH8oqBcaWGqbWdamaaBaaaleaapeGaaGOmaiaaik daa8aabeaak8qadaWadaWdaeaapeWaaSaaa8aabaWdbiabeg8aYbWd aeaapeGaamiCaaaaaiaawUfacaGLDbaaceWG1bGbaGaadaWcaaWdae aapeGaeyOaIyRabmisayaaiaaapaqaa8qacqGHciITcqaH3oaAaaaa aa@5C4D@

условия на стенке, т.е. при η=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdGMaeyypa0 JaaGimaaaa@3B04@ :

u ˜ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qace WG1bGbaGaacqGH9aqpcaaIWaaaaa@3A81@ , w ˜ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qace WG3bGbaGaacqGH9aqpcaaIWaaaaa@3A83@ , H ˜ =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qace WGibGbaGaacqGH9aqpcaaIWaaaaa@3A54@  (4.3)

Предельная форма рассмотренного кинетического ТВУС (4.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  (4.3) представляет собой интегрируемую замкнутую краевую задачу на конечном отрезке (поперечной переменной η MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaeaaaaaaaaa8qacq aH3oaAaaa@3964@  ) для системы обыкновенных дифференциальных уравнений; для полноты картины система должна быть доукомплектована записанным в переменных (2.1) последним уравнением из (1.1).

Заключение

Рассмотрено неравновесное (по внутренним и поступательным степеням ссвободы) течение однородного многоатомного газа в кинетическом ТВУС около острого вращающегося конуса.

Регуляризована задача кинетического ТВУС, описывающего нерегулярное неравновесное течение многоатомного газа около острого вращающегося конуса.

Сформулирован принцип подобия нерегулярного неравновесного течения молекулярного газа в кинетическом ТВУС около острого вращающегося конуса с аналогом Навье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Стокса ТВУС-течения.

Показано: локальные трение и теплообмен на стенке в обоих течениях (кинетическом и нерегулярном ТВУС Навье MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Стокса около вращающегося острого конуса) на всей обтекаемой поверхности соответственно совпадают.

Показано, что решение кинетической задачи нерегулярного ТВУС около острого вращающегося конуса может быть полностью построено на базе решения соответствующей ТВУС-задачи.

Работа поддержана Российским Фондом Фундаментальных Исследований (проект 20-08-00790А).

×

Sobre autores

A. Ankudinov

TsAGI

Autor responsável pela correspondência
Email: ankudin2@yandex.ru
Rússia, Zhukovsky

Bibliografia

  1. Brykina I.G. Asymptotic solutions of the thin viscous shock layer equations near the symmetry plane of blunt bodies in hypersonic rarefied gas flow // Fluid Dyn., 2011, vol. 46, no. 3, pp. 444–455.
  2. Brykina I.G., Rogov B.V., Tirsky G.A., Utyuzhnikov S.V. The effect of surface curvature on the boundary conditions in the viscous shock layer model for hypersonic rarefied gas flow // JAMM, 2012, vol. 76, iss. 6, pp. 677–687.
  3. Brykina I.G., Rogov B.V., Tirsky G.A., Titarev V.A., Utyuzhnikov S.V. A comparative analysis of approaches for investigating hypersonic flow over blunt bodies in a transitional regime // JAMM, 2013, vol. 77, iss. 1, pp. 9–16.
  4. Brykina I.G. Asymptotic investigation of heat transfer and skin friction in three-dimensional hypersonic rarefied gas flows // JAMM, 2016, vol. 80, no. 3, pp. 244–256.
  5. Noori S., Ghasemloo S., Mani M. Viscous shock layer around slender bodies with nonequilibrium air chemistry // Iran. J. Sci.&Technol. Trans. Mech. Engng., 2017, vol. 41, pp. 251–264.
  6. Brykina I.G. Approximate analytical solutions for heat fluxes in three-dimensional hypersonic flow over blunt bodies // Fluid Dyn., 2017, vol. 52, no. 4, pp. 572–586.
  7. Markov A.A. Influence of rotation of the body and exterior vorticity on the heat transfer near the stagnation point of a blunt body in a supersonic stream // Fluid Dyn., 1984, vol. 19, pp. 499–502. https://doi.org/10.1007/BF01093921
  8. Zhuravleva G.S., Pilyugin N.N. Hypersonic flow around rotating axisymmetric bodies // Proc. 4th RNKT, 2006, vol. 2, pp. 112–115.
  9. Kuznetsov M.M., Nikolsky V.S. Kinetic analysis of hypersonic viscous flows of a polyatomic gas in a thin three–dimensional shock layer // Sci. Notes TsAGI, 1985, vol. 16, no. 3, pp. 38–49.
  10. Nikolsky V.S. Kinetic model of hypersonic flows of a rarefied gas // Math. Model., 1996, vol. 8, no. 12, pp. 29 – 46.
  11. Kuznetsov M.M., Lipatov I.I., Nikolsky V.S. Rheology of rarefied gas flow in hypersonic shock and boundary layers // Fluid Dyn., 2007, vol. 42, no. 5, pp. 851 – 857.
  12. Cheng H.K., Lee C.J., Wong E.Y., Yang H.T. Hypersonic slip flows and issues on extending continuum model beyond the Navier–Stokes level // AIAA Paper, 1989, no. 89-1663.
  13. Cheng H.K., Wong E.Y., Dogra V.K. A shock-layer theory based on thirteen-moment equations and DSMC calculations of rarefied hypersonic flows // AIAA Paper, 1991, no. 91-0783.
  14. Cheng H.K., Emanuel G. Perspective on hypersonic nonequilibrium flow // AIAA J., 1995, vol. 33, no. 3, pp. 385–399.
  15. Ankudinov A.L. Kinetic shock layer in the spreading plane of a lifting body apparatus // JAMM, 2021, vol. 85, no. 5, pp. 615–625.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».