On Gyroscopic Stabilization of Equilibria of Nonlinear Potential System
- Авторлар: Kosov A.A.1
-
Мекемелер:
- Matrosov Institute for System Dynamics and Control Theory of SB RAS
- Шығарылым: Том 89, № 1 (2025)
- Беттер: 7-16
- Бөлім: Articles
- URL: https://bakhtiniada.ru/0032-8235/article/view/303537
- DOI: https://doi.org/10.31857/S0032823525010011
- EDN: https://elibrary.ru/BOQTTC
- ID: 303537
Дәйексөз келтіру
Аннотация
The problem of gyroscopic stabilization of the equilibrium position of nonlinear potential systems with a potential of a special kind is considered. The conditions of stabilization of the equilibrium position by attaching gyroscopic forces are obtained. Estimates from below for large parameters with matrices of gyroscopic forces guaranteeing stability of equilibrium in a closed system are given.
Негізгі сөздер
Авторлар туралы
A. Kosov
Matrosov Institute for System Dynamics and Control Theory of SB RAS
Хат алмасуға жауапты Автор.
Email: kosov_idstu@mail.ru
Ресей, Irkutsk
Әдебиет тізімі
- Merkin D. R. Gyroscopic Systems. Moscow: Nauka, 1974. 344 p. (In Russian.)
- Bulatovic R. M. On stability criteria for gyroscopic systems with negative definite stiffness // Univ. of Niš, The Sci. J. Facta Universitatis. Ser. Mech., Autom. Control & Robotics. 2000. Vol. 2, No. 10. Pp. 1081–1087.
- Karapetyan A. V. To the question of gyroscopic stabilization // Teorijska i Primenjena Mehanika. 1994. Vol. 20. Pp. 89–93.
- Bolotin S. V., Negrini P. Asymptotic trajectories of gyroscopic systems // MSU Bull. Ser. 1. Matem. Mech. 1993. No. 6. Pp. 66–75.
- Kozlov V. V. Gyroscopic stabilization of degenerate equilibria and the topology of real algebraic varieties // Dokl. Math. 2008. Vol. 77, Iss. 3. Pp. 412–415. https://doi.org/10.1134/S1064562408030253
- Gantmakher F. R. The Theory of Matrices. New York: Chelsea, 1989–1990.
- Rumyantsev V. V., Oziraner A. S. Stability and Stabilization of Motion with Respect to a Part of Variables. Moscow: Nauka, 1987. 256 p. (In Russian.)
- Lakhadanov V. M. On stabilization of potential systems // J. Appl. Math. Mech. 1975. Vol. 39, Iss. 1. Pp. 45–50.
Қосымша файлдар
