Energy supply into a semi-infinite β — fermi-pasta-ulam-tsingou chain by periodic kinematic loading
- Authors: Liazhkov S.D.1,2, Butuzova E.S.1
-
Affiliations:
- Peter the Great Saint-Petersburg Polytechnic University
- Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
- Issue: Vol 89, No 4 (2025)
- Pages: 546-558
- Section: Articles
- URL: https://bakhtiniada.ru/0032-8235/article/view/308596
- DOI: https://doi.org/10.31857/S0032823525040026
- EDN: https://elibrary.ru/vkxhmh
- ID: 308596
Cite item
Abstract
Energy supply into a semi-infinite one-dimensional Fermi-Pasta-Ulam-Tsingou (FPUT) crystal (chain) at a boundary subjected to sinusoidal kinematic loading is examined. It is demonstrated that, in the linear approximation, the energy input problem can be considered symmetric with respect to the boundary for all loading frequencies. Utilizing the renormalized dispersion relation for the chain, an asymptotic approximation for the input energy at large times is derived. It is shown that at low and moderate frequencies, the obtained estimate of the total energy aligns with the results of numerical simulations, whereas a divergence is observed at high loading frequencies.
About the authors
S. D. Liazhkov
Peter the Great Saint-Petersburg Polytechnic University; Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
Author for correspondence.
Email: sergeiliazhkov@gmail.com
St. Petersburg, Russia; St. Petersburg, Russia
E. S. Butuzova
Peter the Great Saint-Petersburg Polytechnic University
Email: eudokia@bk.ru
St. Petersburg, Russia
References
- Zhukovskii N.E. Work (effort) through Russian and American traction devices when starting a train from a place and at the beginning of its motion // Bull Exp Inst Railways, 1919, iss. 13, рр. 31–57.
- Mandelʹshtam L.I. Polnoe sobranie trudov. Vol. 4. L.: AN SSSR, 1955. 512 p. (in Russian)
- Belotserkovskii P.M. The dynamics of a caterpillar drive // Journal of Applied Mathematics and Mechanics, 2014, iss. 78. no. 6. pp. 580–586.
- Mel'ker A.I., Mihailin A.I. Temporary strength dependence of anharmonic atomic chain //Fizika Tverdogo Tela, 1984, vol. 26, no. 4, pp. 1236–1238.
- Sabirov R.K. Solitons in a loaded atomic chain with cubic and quartic anharmonism // Fizika Tverdogo Tela, 1989, vol. 31, no. 4, pp. 167–171.
- Zakhvataev V.E. A statistical model for short-wavelength collective chain fluctuations in a lipid bilayer under a high external electric field // JETP Letters, 2021, vol. 114, pp. 362–370. https://doi.org/10.1134/S002136402118003X
- Beklemishev S.A., Klochikhin V.L. Solitons and dilatons in the Morse chain // Fizika Tverdogo Tela, 1990, vol. 32, no. 9, pp. 2728–2733.
- Shkurinov A.P., Sinko A.S., Solyankin P.M. et al. Impact of the dipole contribution on the terahertz emission of air-based plasma induced by tightly focused femtosecond laser pulses // Physical Review E., 2017, vol. 95, no. 4, pp. 043209. https://doi.org/10.1103/PhysRevE.95.043209
- Khomeriki R. Nonlinear band gap transmission in optical waveguide arrays // Physical review letters, 2004, iss. 92. no. 6. pp. 063905. https://doi.org/10.1103/PhysRevLett.92.063905
- Khomeriki R., Leon J., Chevriaux D. Quantum Hall bilayer digital amplifier // The European Physical Journal B-Condensed Matter and Complex Systems, 2006, vol. 49, pp. 213–218. https://doi.org/10.1140/epjb/e2006-00053-9
- Kuzkin V.A., Krivtsov A.M. Energy transfer to a harmonic chain under kinematic and force loadings: Exact and asymptotic solutions // Journal of Micromechanics and Molecular Physics, 2018, vol. 3, no. 01n02, pp. 1850004. https://doi.org/10.1142/S2424913018500042
- Mokole E.L., Mullikin A.L., Sledd M. B. Exact and steady-state solutions to sinusoidally excited, half-infinite chains of harmonic oscillators with one isotopic defect // Journal of mathematical physics, 1990, vol. 31, no. 8, pp. 1902–1913. https://doi.org/10.1063/1.528689
- Saadatmand D., Xiong, D., Kuzkin, V. A. Discrete breathers assist energy transfer to ac-driven nonlinear chains // Physical Review E., 2018, vol. 97, no. 2, pp. 022217. https://doi.org/10.1103/PhysRevE.97.022217
- Liazhkov S.D. Energy supply into a semi-infinite β -Fermi–Pasta–Ulam–Tsingou chain by periodic force loading // Acta Mechanica, 2024, pp. 1–23. http://dx.doi.org/10.1007/s00707-024-03929-8
- Fermi E., Pasta P., Ulam S., M Tsingou. Studies of the nonlinear problems. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States), 1955. no. LA-1940.
- Berman G.P., Izrailev F.M. The Fermi–Pasta–Ulam problem: fifty years of progress // Chaos: An Interdisciplinary Journal of Nonlinear Science, 2005, Т. 15, no. 1. https://doi.org/10.1063/1.1855036
- Khomeriki R., Lepri S., Ruffo S. Nonlinear supratransmission and bistability in the Fermi-Pasta-Ulam model //Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 2004, vol. 70, no. 6, pp. 066626. https://doi.org/10.1103/PhysRevE.70.066626
- Watanabe Y., Nishimoto M., Shiogama C. Experimental excitation and propagation of nonlinear localized oscillations in an air-levitation-type coupled oscillator array // Nonlinear Theory and Its Applications, IEICE, 2017, vol. 8, no. 2, pp. 146–152. https://doi.org/10.1587/nolta.8.146
- Yosuke Watanabe, Takunobu Nishida, Yusuke Doi et al. Experimental demonstration of excitation and propagation of intrinsic localized modes in a mass–spring chain // Physics Letters A., 2018, vol. 382, no. 30, pp. 1957–1961. https://doi.org/10.1016/j.physleta.2018.04.055
- Cannas S.A., Prato D. Externally excited semi-infinite one-dimensional models // American Journal of Physics, 1991, vol. 59, no. 10, pp. 915–920. https://doi.org/10.1119/1.16671
- Kuzkin V.A. Acoustic transparency of the chain-chain interface // Physical Review E., 2023, vol. 107, no. 6, pp. 065004. https://doi.org/10.1103/PhysRevE.107.065004
- Gershgorin B., Lvov Y.V., Cai D. Renormalized waves and discrete breathers in -Fermi-Pasta-Ulam chains // Physical review letters, 2005, vol. 95, no. 26, pp. 264302. https://doi.org/10.48550/arXiv.math-ph/0506011
- Panovko Y.G. Introduction to mechanical vibrations. [Vvedenie v teoriyu mekhanicheskih kolebanij]. M.: Nauka, 1991.
- Narisetti R.K., Leamy M.J., Ruzzene M. A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures // Journal of vibration and acoustics, 2010, vol. 132, iss. 3, pp. 031001. https://doi.org/10.1115/1.4000775
- Podolskaya E.A., Krivtsov A.M., Kuzkin V. A. Discrete thermomechanics: From thermal echo to ballistic resonance (a review) // Mechanics and Control of Solids and Structures, 2022, pp. 501–533. https://doi.org/10.1007/978-3-030-93076-9_24
- Gavrilov S.N., Krivtsov A.M., Tsvetkov D.V. Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply // Continuum Mechanics and Thermodynamics, 2019, vol. 31, no. 1, pp. 255–272. https://doi.org/10.1007/s00161-018-0681-3
- Dmitriev S.V., Kuzkin V.A., Krivtsov A.M. Nonequilibrium thermal rectification at the junction of harmonic chains // Physical Review E., 2023, vol. 108, no. 5, pp. 054221. https://doi.org/10.1103/PhysRevE.108.054221
- Trunova I.N., Kuzkin V.A. Ballistic thermoelasticity of nonlinear chains under thermal shock // Physical Review E., 2025, vol. 111, no. 1, pp. 014227. https://doi.org/10.1103/physreve.111.014227
- Nianbei Li, Jie Ren, Lei Wang et al. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond // Reviews of Modern Physics, 2012, vol. 84, no. 3, pp. 1045–1066. https://doi.org/10.1103/RevModPhys.84.1045
- Malik F.K., Fobelets K. A review of thermal rectification in solid-state devices // Journal of Semiconductors, 2022, vol. 43, no. 10, pp. 103101. https://doi.org/10.1088/1674-4926/43/10/103101
Supplementary files
