Determination of the upper limit of the bearing capacity of axisymmetric reinforced shallow shells in contact with an incompressible fluid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An axisymmetric problem is formulated for determining the upper (kinematic) limit of the bearing capacity of spherical shallow shells of annular shape in plan, the internal openings of which are closed by rigid inserts. Such compound structures are in contact with an incompressible fluid. The shells are reinforced with fibers along spiral trajectories symmetrical with respect to the meridian, as well as along meridional and/or circumferential directions. The materials of the composition components are assumed to be rigid-plastic and have different yield strengths under tension and compression. Plastic flow in the phases of the composition is determined by piecewise linear flow conditions. A two-layer model of a thin-walled structure is used, the kinematics of which in the limit state is described by the relations of the classical theory of shallow shells. The extreme problem of determining the ultimate load is formulated on the basis of the application of the principle of virtual power. An unconventional discretization of this problem was carried out, the solution of which was obtained using methods of linear programming theory. The convergence of the numerical solution is tested and compared with exact solutions of similar problems for homogeneous isotropic plates. Good accuracy of the numerical solution is demonstrated. The influence of the reinforcement structure parameters, the magnitude of the shallow shell lift and boundary conditions on the value of the ultimate load is investigated. It is shown that for annular plates the best arrangement of fibers is in the radial direction, and for shallow shells the rational one is a meridional-circumferential structure with specially selected reinforcement densities. It has been demonstrated that with an increase in the lifting height of a shallow shell, its load-bearing capacity more than doubles compared to a plate of the same geometry in plan and the same thickness.

About the authors

A. P. Yankovskii

Khristianovich Institute of Theoretical and Applied Mechanics of the SB RAS

Author for correspondence.
Email: yankovsky_ap@itam.nsc.ru
Novosibirsk, Russia

References

  1. Ambardzumyan S.A. The General Theory of Anisotropic Shells. Moscow: Nauka, 1974. 446 p. (in Russian)
  2. Composites: State of Art / ed. by Weeton L.W., Scala E.N.Y.: Metallurg. Soc. of AIME, 1974. 365 p.
  3. Composite Materials. Handbook / ed. by Karpinos D.M. Kiev: Naukova Dumka, 1985. 592 p. (in Russian)
  4. Mouritz A.P., Gellert E., Burchill P., Challis K. Review of advanced composite structures for naval ships and submarines // Compos. Struct., 2001, vol. 53, no. 1, pp. 21–42.
  5. Bannister M. Challenger for composites into the next millennium – a reinforcement perspective // Composites, 2001, pt. A 32, pp. 901–910.
  6. Abrosimov N.A., Bazhenov V.G. Nonlinear Problems of Dynamics Composites Designs. Nizhniy Novgorod: Nizhniy Novgorod State Univ., 2002. 400 p. (in Russian)
  7. Reddy J.N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. N.Y.: CRC Press, 2004, 831 p.
  8. Soutis C. Fibre reinforced composites in aircraft construction // Progr. in Aerosp. Sci., 2005, vol. 41, no. 2, pp. 143–151.
  9. Qatu M.S., Sullivan R.W., Wang W. Recent research advances on the dynamic analysis of composite shells: 2000–2009 // Compos. Struct., 2010, vol. 93, pp. 14–31.
  10. Gill S.K., Gupta M., Satsangi P. Prediction of cutting forces in machining of unidirectional glass-fiber-reinforced plastic composites // Frontiers of Mech. Engng., 2013, vol. 8, no. 2, pp. 187–200.
  11. Vasiliev V.V., Morozov E. Advanced Mechanics of Composite Materials and Structural Elements. Amsterdam: Elsever, 2013. 412 p.
  12. Solomonov Yu.S., Georgievskii V.P., Nedbai A.Ya., Andriushin V.A. Applied Problems of Mechanics of Composite Cylindrical Shells. Moscow: Fizmatlit, 2014. 408 p. (in Russian)
  13. Gibson R.F. Principles of Composite Material Mechanics. Boca Raton: CRC Press, 2016. 700 p.
  14. Khazov P.A., Vedyajkina O.I., Pomazov A.P., Kozhanov D.A. Elastic-plastic deformation of steel-concrete beams with local crumpling during three-point bending // Probl. of Strength&Plasticity, 2024, vol. 86, no. 1, pp. 71–82. (in Russian)
  15. Nemirovskii Yu.V. Limit equilibrium of multi-layer reinforced axisymmetric shells // Mech. of Solids, 1969, no. 6, pp. 80–89. (in Russian)
  16. Ramu S.A., Iyengar K.J. Plastic response of orthotropic spherical shells under blast loading // Nucl. Eng. Des., 1979, vol. 55, no. 3, pp. 363–373.
  17. Mroz Z., Shamiev F.G. Simplified yield conditions for fibre-reinforced plates and shells // Arch. Inz. Lad., 1979, vol. 25, no. 3, pp. 463–476.
  18. Kazanci Z. Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses // Int. J. of Non-Lin. Mech., 2011, vol. 46, pp. 807–817.
  19. Vena P., Gastaldi D., Contro R. Determination of the effective elastic-plastic response of metal-ceramic composites // Int. J. of Plasticity, 2008, vol. 24, pp. 483–508.
  20. Leu S.-Y., Hsu H.-C. Exact solutions for plastic responses of orthotropic strain-hardening rotating hollow cylinders // Int. J. of Mech. Sci., 2010, vol. 52, pp. 1579–1587.
  21. Brassart L., Stainier L., Doghri I., Delannay L. Homogenization of elasto-(visco) plastic composites based on an incremental variational principle // Int. J. of Plasticity, 2012, vol. 36, pp. 86–112.
  22. Nemirovsky Yu.V., Romanova T.P. Calculation of bearing ability of the ice plates reinforced by geosynthetic fibres // Sci.&Technol. in the Road Industry, 2013, no. 1, pp. 27–31. (in Russian)
  23. Alderliesten R.C., Benedictus R. Modelling of impact damage and dynamics in fibre-metal laminates. – A review // Int. J. Impact Engng., 2014, vol. 67, pp. 27–38.
  24. Akhundov V.M. Incremental carcass theory of fibrous media under larger elastic and plastic deformations // Mech. of Compos. Mater., 2015, vol. 51, no. 3, pp. 539–558.
  25. Jahangirov A.A. Carrying capacity of reinforced three layers circular composite plate clamped on edge and lying on non-compressible foundation // Mech. of Machines, Mech.&Mater., 2015, no. 4 (33), pp. 50–54. (in Russian)
  26. Zoubida S., Aboutajeddine Ah., Seddouki A. Elastoplastic mean-field homogenization: recent advances review // Mech. of Adv. Mat.&Struct., 2020, vol. 29, no. 3, pp. 449–474. https://doi.org/10.1080/15376494.2020.1776431
  27. Romanova T.P., Yankovskii A.P. Piecewise-linear yield loci of angle-ply reinforced medium of different-resisting rigid-plastic materials at 2D stress state // Mech. of Solids, 2020, vol. 55, no. 8, pp. 1235–1252.
  28. He G., Liu Y., Lacy T.E., Horstemeyer M.F. A historical review of the traditional methods and the internal state variable theory for modeling composite materials // Mech. Adv. Mater. Struct., 2022, vol. 29, no. 18, pp. 2617–2638.
  29. Romanova T.P., Yankovskii A.P. Load-bearing capacity of rigid-plastic reinforced shallow shells and plates // Mech. Adv. Mater. Struct., 2022, vol. 29, no. 26, pp. 5651–5665.
  30. Romanova T.P. Rigid-plastic behavior and bearing capacity of thin flat reinforced rotating disks // Mech. Adv. Mater. Struct., 2024, vol. 31, no. 30, pp. 12721–12739. https://doi.org/10.1080/15376494.2024.2328751
  31. Yankovskii A.P. Determination of the upper limit of the load-loading capacity of bending reinforced metal-composite ring plates in contact with a liquid incompressible medium. 1. Problem formulation and calculation method // Probl. of Strength&Plasticity, 2024, vol. 86, no. 3, pp. 5–19. (in Russian)
  32. Erkhov M.I. Theory of Ideally Plastic Bodies and Structures. Moscow: Nauka, 1978. 352 p. (in Russian)
  33. Ishlinskiy A.Yu., Ivlev D.D. Mathematical Theory of Plasticity. Moscow: Fizmatlit, 2001. 707 p. (in Russian)
  34. Chakrabarty J. Applied Plasticity. N.Y.: Springer, 2010. 755 p.
  35. Yudin A.S. Stability and Vibrations of Structurally Anisotropic and Artificial Shells of Rotation. Rostov-on-Don: South. Fed. Univ., 2011. 362 p. (in Russian)
  36. Cheng Wang, Tonghui Yang, Wan Li, Li Tao, Abuziarov M.Kh., Kochetkov A.V. Modeling of elastic-plastic deformation of elements of spatial structures during pulse interaction with fluid based on the Godunov’s method of increased accuracy // Probl. of Strength&Plasticity, 2019, vol. 81, no. 4, pp. 489–500. (in Russian)
  37. Hodge P.G., Chang-Kuei Sun. Yield-point load of a circular plate seating an incompressible fluid // Int. J. Mech. Sci., 1967, vol. 9, no. 7, pp. 405–414.
  38. Nemirovsky Yu.V., Romanova T.P. Load-bearing capacity of reinforced ice round plates // Probl. of Strength&Plasticity, 2011, no. 73, pp. 25–34. (in Russian)
  39. Onat E. The plastic collapse of cylindrical shells under axially symmetrical loading // Quart. of Appl. Math., 1955, XIII, no. 1, pp. 63–72.
  40. Zuhovickii S.I., Avdeeva L.I. Linear and Convex Programming. Moscow: Nauka, 1964. 348 p. (in Russian)
  41. Banichuk N.V., Kobelev V.V., Rikards R.B. Optimization of Structural Elements Made of Composite Materials. Moscow: Mashinostroenie, 1988. 224 p. (in Russian)
  42. Hu L.W. Modified Tresks’s yield condition and associated flow rules for anisotropic materials and applications // J. Franclin Inst., 1958, vol. 265, no. 3, pp. 187–204.
  43. Berezin I.S., Zhidkov N.P. Calculation Methods. Vol. 1. Moscow: Fizmatgiz, 1966. 632 p. (in Russian)
  44. Il′yushin A.A. Proceedings (1946–1966). Vol. 2. Plasticity. Moscow: Fizmatlit, 2004. 480 p. (in Russian)
  45. Building Regulations 2.03.01–84. Concrete and Reinforced Concrete Structures / Gosstroy USSR. Moscow: CITP Gosstroy USSR, 1989. 80 p. (in Russian)
  46. Carmo M.P. Differential Geometry of Curves And Surfaces. New Jersey: Prentice-Hall Inc., 1976.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».