Modeling of ONERA Experiment with Subsonic Premixed Turbulent Flame in Duct with Backward Step
- Authors: Vlasenko V.V.1,2, Balabanov R.A.1,2, Liu W.2, Molev S.S.1, Sabelnikov A.V.1
-
Affiliations:
- TsAGI
- MIPT
- Issue: No 1 (2025)
- Pages: 26-48
- Section: Articles
- URL: https://bakhtiniada.ru/0032-8235/article/view/303543
- DOI: https://doi.org/10.31857/S0032823525010036
- EDN: https://elibrary.ru/BOKVKN
- ID: 303543
Cite item
Abstract
The premixed subsonic turbulent combustion of methane-air mixture in channel with backward step is considered. (Magre P. et al., ONERA, 1975-1989). These experiments represent basic physical mechanisms, which are common for combustion processes in gas turbine units. The brief review of previous works on numerical modeling of these experiments is presented. The new results of numerical investigation of stable flame regime for this experimental setup are presented. The choice of turbulence model and its influence on flow structure are described. Various approaches for turbulent combustion description, based on PaSR (Partially Stirred Reactor) are compared with quasi-laminar approach. The recommendations are given for choice between global and multistage chemical kinetics in combination with different models for turbulence combustion interaction. The influence of variable turbulent Prandtl and Schmidt number model on this flow representation. The ideas for further research are formulated.
About the authors
V. V. Vlasenko
TsAGI; MIPT
Author for correspondence.
Email: vlasenko.vv@yandex.ru
Russian Federation, Zhukovsky; Dolgoprudny
R. A. Balabanov
TsAGI; MIPT
Email: vlasenko.vv@yandex.ru
Russian Federation, Zhukovsky; Dolgoprudny
Wenchao Liu
MIPT
Email: vlasenko.vv@yandex.ru
Russian Federation, Dolgoprudny
S. S. Molev
TsAGI
Email: vlasenko.vv@yandex.ru
Russian Federation, Zhukovsky
A. V. Sabelnikov
TsAGI
Email: vlasenko.vv@yandex.ru
Russian Federation, Zhukovsky
References
- Vlasenko V. V., Balabanov R. A., Liu W., Molev S. S., Sabelnikov V. A. Models for description of subsonic flows with premixed turbulent combustion in channels // JAMM. 2024. Vol. 88. No. 6. Pp. 828–836.
- Correa S. S. Non-equilibrium step-stabilized combustion of hydrogen in supersonic air // 24th AIAA/ASME/SAE/ASEE Joint Propulsion Conf.: Massachusetts, USA. AIAA Paper. 1988. Vol. 88. 3223. 9 p.
- Ueda T., Mizomoto M. Effect of slot gas injection to the flow field and coherent structure characteristics of a backstep flow // Int. J. Heat Mass Transfer. 2001. Vol. 44. No. 14. Pp. 2711–2726.
- Magre P., Moreau P., Collin G., Borghi R., Péalat M. Further studies by CARS of premixed turbulent combustion in a high velocity flow // Combust. & Flame. 1988. Vol. 71. No. 2. Pp. 147–168.
- Petrova N. Turbulence-chemistry interaction models for numerical simulation of aeronautical propulsion systems. PhD Thesis. Paris: Ecole Polytechnique, 2015. 316 p. https://hal.archives-ouvertes.fr/tel-01113856/
- Poinsot T., Veynante D. Theoretical and Numerical Combustion. Flourtown: RT Edwards Inc., 2005. 522 p.
- Peters N. Turbulent Combustion. Cambridge: University Press, 2000. 304 p.
- Lipatnikov A. Fundamentals of Premixed Turbulent Combustion. Boca Raton: CRC Press, 2012. 548 p.
- Dupoirieux F., Vincent A., Bertier N., Banh A. Numerical simulation of a premixed CH₄-air burner for comparison of RANS and LES methodologies // NEPCAP. 2016. October 2016. Sochi, Russia. hal-01400311.
- Lebedev A. B., Toktaliev P. D., Yakubovsky K. Ya. Computational research of turbulent homogenous combustion of methane-air mixture with RANS and LES methods in low emission combustion chamber // Combust. & Explos. 2017. Vol. 10. No. 4. Pp. 8–16. (In Russian.)
- Toktaliev P. D., Yakubovsky K. Ya., Lebedev A. B. Numerical research of unsteady homogenous combustion regimes of methane-air mixture in low emission combustion chamber // Combust. & Explos. 2017. Vol. 11. No. 1. Pp. 35–46. (In Russian.)
- Sainte-Rose B. Simulations numériques d’écoulements réactifs massivement écolés par une approche hybride RANS/LES. PhD Thesis. Paris: Ecole Centrale, 2010. 186 p.
- Colin O., Ducros F., Veynante D., Poinsot T. A thickened flame model for large eddy simulations of turbulent premixed combustion // Phys. Fluids. 2000. Vol. 12. Pp. 1843–1863.
- Legiert J. P., Poinsot T. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion // Studying Turbulence Using Numerical Simulation Databases. 2000. Vol. VIII. Pp. 157–168.
- Refloch A., Courbet B., Murrone A., Villedieu P., Laurent C., Gilbank P., Troyes J., Tessé L., Chaineray G., Dargaud J. B., Quémerais E., Vuillo F. CEDRE Software. https://web.archive.org/web/20200216012255/http://www.aerospacelab-journal.org/sites/www.aerospacelab-journal.org/files/AL2-11.pdf
- Sabelnikov V., Fureby C. LES combustion modeling for high Re flames using a multi-phase analogy // Combust. & Flame. 2013. Vol. 160. No. 1. Pp. 83–96.
- Berglund M., Fedina E., Fureby C., Tegnér J., Sabel'nikov V. Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet // AIAA J. 2010. Vol. 48. No. 3. Pp. 540–550.
- Petrova N., Sabelnikov V., Bertier N. Numerical simulation of a backward-facing step combustor using RANS/Extended Partially Stirred Reactor model // EUCASS-2015. 17 p.
- Laboratory of physical and numerical modeling of flows with turbulent combustion. http://tsagi.ru/institute/lab220/
- Troshin A. I., Molev S. S., Vlasenko V. V., Mikhailov S. V., Bakhne S., Matyash S. V. Modeling of turbulent flows on the basis of IDDES method in ZFLARE program // Comput. Cont. Mech. 2023. Vol. 16. No. 2. Pp. 203–218. (In Russian.)
- Moule Y., Sabelnikov V., Mura A. Highly resolved numerical simulation of combustion in supersonic hydrogen-air coflowing jets // Combust. & Flame. 2014. Vol. 161. No. 10. Pp. 2647–2668.
- Vlasenko V. V., Nozdrachev A. Yu., Sabelnikov V. A., Shirayeva A. A. Analysis of stabilization mechanisms of turbulent combustion on the data of calculations with application of partially stirred reactor // Combust. & Explos. 2019. Vol. 12. No. 1. Pp. 43–57. (In Russian.)
- Vlasenko V. V., Kazhan E. V., Matyash E. S., Mikhailov S. V., Troshin A. I. Numerical realization of implicit scheme and various turbulence models in computational module ZEUS // Tr. TSAGI. 2015. No. 2735. Pp. 5–49. (In Russian.)
- Balabanov R. A., Vlasenko V. V., Shirayeva A. A. Validation experience of turbulent combustion models of PaSR class and plans for these models development for gas turbine units combustion chambers // In: Unsteady Processes: Plasma, Combustion, Atmosphere. NEPCAP-2022 / Ed. by Frolov S. M., Lanshin A. I. Moscow: Torus Press, 2022. Pp. 94–99. (In Russian.)
- Liu W. Influence of chemical kinetics models on results of numerical modeling of turbulent flows with combustion. PhD Thesis. Moscow: MIPT; Dorodnitsyn Comput. Centre of the RAS, 2023. 154 p. (In Russian.) https://www.frccsc.ru/sites/default/files/docs/ds/002-073-03/008-lu/24-1-224-02_008_Lu_main.pdf?738
- ANSYS CFD. https://www.ansys.com/products/fluids#tab1-2
- Menter F. R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model // Turbulence, Heat Mass Transfer. 2003. Vol. 4. No. 1. Pp. 625–632.
- Menter F. R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA J. 1994. Vol. 32. No. 8. Pp. 1598–1605.
- Basevich V. Ya., Belyaev A. A., Frolov S. M. Global kinetic mechanisms for calculation of turbulent reacting flows. Part 1. Basic chemical process of heat release // Chem. Phys. 1998. Vol. 7. No. 9. Pp. 112–128. (In Russian.)
- Franzelli B., Riber E., Gicquel L. Y., Poinsot T. Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame // Combust. & Flame. 2012. Vol. 159. No. 2. Pp. 621–637.
- Smooke M. D. Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames: A Topical Volume. Lecture Notes in Physics. Vol. 384. Berlin: Springer, 1991. 251 p.
- Bosnyakov S., Kursakov I., Lysenkov A., Matyash S., Mikhailov S., Vlasenko V., Quest J. Computational tools for supporting the testing of civil aircraft configurations in wind tunnels // Progr. Aerosp. Sci. 2008. Vol. 44. Pp. 67–120.
- Shiryaeva A. A. Modeling of high speed flows with mixed regimes of turbulent combustion on the basis of three-dimensional Reynolds equations. PhD Thesis. Moscow: MIPT, 2019. 217 p. (In Russian.)
- Zeldowitsch J. B., Frank-Kamenetzki D. A. A theory of thermal propagation of flame // In: Dynamics of Curved Fronts. Academic Press, 1988. Pp. 131–140.
- Berglund M., Fedina E., Fureby C., Tegnér J., Sabel'nikov V. Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet // AIAA J. 2010. Vol. 48. No. 3. Pp. 540–550.
- Magnussen B. F. The eddy dissipation concept: A bridge between science and technology // ECCOMAS Thematic Conf. on Comput. Combust. Lisbon, 2005.
- Chomiak J., Karlsson A. Flame liftoff in diesel sprays // Int. Symp. on Combustion. 1996. Vol. 26. No. 2. Pp. 2557–2564.
- Wilcox D. C. Turbulence Modeling for CFD. 3rd ed. La Cañada: DCW Industries, 2006. 544 p.
Supplementary files
