Modeling of an axisymmetric shape of an equilibrium drop resting on a horizontal plane

Cover Page

Cite item

Full Text

Abstract

The problem of calculating the equilibrium axisymmetric shape of a liquid drop resting on a non-deformable horizontal plane is formulated. For the first time, an equation for the balance of forces acting on a drop in the vertical direction has been obtained, which completes the formulation of the problem under consideration. A high-precision numerical method for solving the formulated nonlinear problem has been developed. The dependence of the wetting angles of drops on variation of the input data of the problem: the chemical composition of the drop, gas pressure, and the strength of additional weak interaction (for example, van der Waals or electrochemical origin) is studied. For drops of small diameters, the possibility of the existence of two solutions is shown, which correspond to significantly different contact angles: in the first solution, the contact angles are less than 90°, and in the second, they are greater than 90°, reaching values of 160° and more. The existence of two equilibrium forms of a small-diameter drop is confirmed by full-scale experiments. Equilibrium forms of droplets of large diameters can exist only in the presence of an additional weak repulsive force between the liquid and the supporting surface, having an intensity of the order of 10–7…10–5 Pa. In this case, for drops of large diameters, there is only one solution.

Full Text

1. Введение. Поверхностные явления на данный момент времени представляют собой одну из актуальных проблем исследования, так как сведения о состоянии поверхности и поверхностном натяжении играют существенную роль во многих инженерных приложениях, в частности они оказывают значительное влияние на эффективность процессов в теплообменниках [1], а также и на работу других изделий [2]. При этом важную роль играет смачивающая способность жидкости по отношению к твердой поверхности, на которую она конденсируется или падает в виде капель. Для покоящихся капель жидкости эта способность количественно характеризуется краевым (критическим [2] или контактным [3]) углом смачивания θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdehaaa@394D@ . Если θ< 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyipaW JaaGyoaiaaicdadaahaaWcbeqaaiablIHiVbaaaaa@3D35@ , то поверхность считается гидрофильной; если же θ> 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyOpa4 JaaGyoaiaaicdadaahaaWcbeqaaiablIHiVbaaaaa@3D39@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  гидрофобной; при θ> 150 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyOpa4 JaaGymaiaaiwdacaaIWaWaaWbaaSqabeaacqWIyiYBaaaaaa@3DF0@  поверхность определяется как супергидрофобная.

К поверхностям различных элементов одних и тех же инженерных изделий одновременно могут предъявляться и различные требования к их смачиваемости (гидрофильные и гидрофобные) [1], обеспечить которые можно либо за счет использования материалов, обладающих естественными поверхностно активными свойствами, либо за счет специального текстурирования контактной поверхности. Так, в [4, 5] супергидрофобность поверхности достигается не только за счет формирования ее иерархической структуры, но и благодаря природным водоотталкивающим свойствам, используемых оксидов редкоземельных металлов. В работе же [6] гидрофобность и почти супергидрофобность поверхности были получены исключительно за счет текстуры керамического покрытия из оксида циркония, который обычно проявляет тенденцию к гидрофильности. Так как в последнем случае смачивающие свойства поверхности характеризуются только геометрией ее шероховатости, то возникает задача определения зависимости краевых углов смачивания капель, покоящихся на таких поверхностях, от параметров их геометрии. Для решения этой проблемы, очевидно, необходимо построить математические модели, описывающие формы капель, лежащих на шероховатых подложках.

Однако, прежде всего следует построить аналогичные адекватные модели для капель, покоящихся на идеализированной, абсолютно гладкой горизонтальной поверхности. Несмотря на то, что публикации по этой теме весьма многочисленны [2, 3, 7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 11 и др.], с позиций механики эта проблема так и не была решена, оставаясь логически не замкнутой. Действительно, из обзора, представленного в [2], и из более поздних работ [3, 12] следует, что до сих пор для капель весомых жидкостей, покоящихся на горизонтальной плоскости, не составлен баланс сил в вертикальном направлении MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  в направлении действия силы тяжести.

Так, в классическом решении Юнга краевой угол θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdehaaa@394D@  вычисляется через силы (в [2, 3] использован термин «коэффициенты») поверхностного натяжения межфазных границ жидкость MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ газ σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaaaaa@3B23@ , твердое тело MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ жидкость σ SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGmbaabeaaaaa@3B2F@  и твердое тело MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ газ σ SG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGhbaabeaaaaa@3B2A@  (рис. 1). При этом рассматривается баланс указанных сил только в горизонтальном направлении (см. точку A MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqaaaa@385E@  на рис. 1), из которого вытекает формула [2]

cosθ= σ SG σ SL / σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaci4yaiaac+gaca GGZbGaeqiUdeNaeyypa0ZaaeWaaeaacqaHdpWCdaWgaaWcbaGaam4u aiaadEeaaeqaaOGaeyOeI0Iaeq4Wdm3aaSbaaSqaaiaadofacaWGmb aabeaaaOGaayjkaiaawMcaaiaac+cacqaHdpWCdaWgaaWcbaGaamit aiaadEeaaeqaaaaa@4B1A@  (1.1)

 

Рис. 1. Меридиональное сечение равновесной осесимметричной капли, покоящаяся на горизонтальной недеформируемой подложке

 

Соотношение (1.1) предполагается справедливым для идеально гладкой горизонтальной поверхности. Однако реальные опорные поверхности практически всегда обладают шероховатостью, что, как уже отмечалось, может влиять на их смачиваемость. В [2] со ссылкой на эксперименты предлагается в равенстве (1.1) учитывать шероховатость следующим образом. Пусть r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCaaaa@388F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  фактор неровности опорной поверхности, а именно отношение реальной площади поверхности к площади проекции этой поверхности на горизонтальную плоскость, тогда правую часть в уравнении (1.1) следует умножить на r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCaaaa@388F@ . Однако справедливость такого учета шероховатости поверхности подложки вызывает определенные сомнения. Действительно, если искусственно профилировать опорную поверхность, например, в соответствии с поведением функции Вейерштрасса, то согласно ее фрактальным свойствам, можно получить сколь угодно большое значение r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCaaaa@388F@ . Но тогда в силу ограниченности функции косинуса, при достаточно больших r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCaaaa@388F@  равенство в преобразованном соотношении (1.1) будет невозможно. По-видимому, именно неудачность такого выбора параметра шероховатости опорной поверхности приводит к тому, что в экспериментах угол смачивания принимает не какое-то конкретное значение θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdehaaa@394D@ , а его величина попадает в некоторых диапазон θ min θ θ max MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiGac2gacaGGPbGaaiOBaaqabaGccqGHKjYOcqaH4oqCcqGHKjYO cqaH4oqCdaWgaaWcbaGaciyBaiaacggacaGG4baabeaaaaa@462B@ , причем разность θ max θ min MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiGac2gacaGGHbGaaiiEaaqabaGccqGHsislcqaH4oqCdaWgaaWc baGaciyBaiaacMgacaGGUbaabeaaaaa@41F8@  может достигать величины порядка 10 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGymaiaaicdada ahaaWcbeqaaiablIHiVbaaaaa@3A73@  [2]. А это означает, что разным шероховатым поверхностям при одинаковых значениях r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCaaaa@388F@  могут соответствовать существенно разные критические углы θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdehaaa@394D@ .

При выводе формулы (1.1) Юнг предполагал, что форму покоящейся на поверхности капли можно аппроксимировать сегментом шара. Однако такая аппроксимация формы капли не подтверждается экспериментально (особенно в случаях капель больших объемов [6]) и не удовлетворяет уравнению Лапласа [2, 3]

σ LG 1/ R 1 +1/ R 2 = p L p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaakmaabmaabaGaaGymaiaac+cacaWGsbWa aSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaGymaiaac+cacaWGsbWaaS baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaamiCamaa BaaaleaacaWGmbaabeaakiabgkHiTiaadchadaWgaaWcbaGaam4raa qabaaaaa@49E1@ , (1.2)

где p L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGmbaabeaaaaa@3989@  и p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaaaaa@3984@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  давление на поверхности капли со стороны жидкости и газа соответственно; R 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaIXaaabeaaaaa@3955@  и R 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaIYaaabeaaaaa@3956@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  радиусы главной кривизны этой поверхности. Действительно, для сферической формы капли имеем 1/ R 1 =1/ R 2 =const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGymaiaac+caca WGsbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGymaiaac+cacaWG sbWaaSbaaSqaaiaaikdaaeqaaOGaeyypa0Jaae4yaiaab+gacaqGUb Gaae4Caiaabshaaaa@44C6@ , т.е. левая часть в соотношении (1.2) является постоянной, а правая же часть в случае весомой капли MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  функция, зависящая от вертикальной координаты (см. рис. 1), а значит равенство в выражении (1.1) не возможно.

Из рассмотрения равновесия точки A MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqaaaa@385E@  на рис. 1 вытекает, что даже при использовании классического подхода в вертикальном направлении со стороны опорной поверхности на каплю (точнее на краевую точку A MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqaaaa@385E@  ) действует сила реакции, направленная вниз:

R z A = σ LG sinθ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaamyqaaaakiabg2da9iabeo8aZnaaBaaaleaacaWG mbGaam4raaqabaGcciGGZbGaaiyAaiaac6gacqaH4oqCaaa@4394@ , (1.3)

которую можно рассчитать, если из равенства (1.1) уже определен угол θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdehaaa@394D@ .

Как видно, согласно модели Юнга, сила R z A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaamyqaaaaaaa@3A60@  никак не участвует в расчете угла смачивания θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdehaaa@394D@ . Однако, как будет показано в настоящей работе, для весомых капель именно силы реакции со стороны опорной поверхности, действующие на каплю в вертикальном направлении и аналогичные R z A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaamyqaaaaaaa@3A60@  в соотношении (1.3), определяют величину угла θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdehaaa@394D@ , а отнюдь не баланс сил в горизонтальном направлении, из которого получено выражение (1.1).

Известным недостатком формулы (1.1) при ее практическом применении является необходимость знания коэффициентов натяжения σ SG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGhbaabeaaaaa@3B2A@  и σ SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGmbaabeaaaaa@3B2F@ , которые предварительно нужно как-то определить из каких-то независимых экспериментов, которые, как правило, в литературе никак не обсуждаются.

С физической точки зрения силы поверхностного натяжения возникают в жидком или твердом теле в очень малой окрестности поверхности контакта с другим телом или средой (газовой, жидкой или твердофазной). Поэтому, строго говоря, для жидкой капли, покоящейся на горизонтальной плоскости, в точке поворота ее контура (в точке контакта [3]) следует рассматривать не три коэффициента поверхностного натяжения, как это делается в модели Юнга (см. выражение (1.1) и силы, приложенные к точке A MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqaaaa@385E@  на рис. 1), а четыре коэффициента (см. систему сил, приложенных к точке B MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOqaaaa@385F@  на рис. 1): прежние коэффициенты натяжения σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaaaaa@3B23@  и σ SG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGhbaabeaaaaa@3B2A@ , а вместо одной прежней силы σ SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGmbaabeaaaaa@3B2F@  необходимо различать два коэффициента: σ LS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGtbaabeaaaaa@3B2F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  силу поверхностного натяжения жидкости на границе с твердым телом (пунктирная стрелка на рис. 1) и σ SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGmbaabeaaaaa@3B2F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  силу поверхностного натяжения, действующую в твердой подложке на границе ее контакта с жидкостью (см. силу σ SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGmbaabeaaaaa@3B2F@ , исходящую из точки B MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOqaaaa@385F@  на рис. 1). В силу этого обстоятельства в окрестности точки B MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOqaaaa@385F@  на рис. 1 силы σ SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGmbaabeaaaaa@3B2F@  и σ SG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGhbaabeaaaaa@3B2A@  сознательно изображены чуть ниже границ разделов твердое тело MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ жидкость и твердое тело MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ газ, а сила σ LS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGtbaabeaaaaa@3B2F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  чуть выше границы раздела жидкость MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ твердое тело. На рис. 2 изображена в увеличенном масштабе окрестность точки B на рис. 1. Штриховыми линиями на рис. 2 условно изображены границы слоев в жидкой и твердой средах, в которых действуют введенные выше силы поверхностного (строго говоря, приповерхностного) натяжения. Такое уточнение коэффициентов поверхностного натяжения потребуется далее при составлении баланса сил в краевой точке жидкой капли.

 

Рис. 2. Краевая точка и ее окрестность в капле и подложке (а), только в капле (б) и только в подложке (в) с указанием системы сил, приложенных к этой точке

 

В более поздней, чем обзор [2], работе [3] проводится расчет равновесной формы весомой капли, покоящейся на горизонтальной плоскости. И хотя при этом используется уравнение Лапласа (1.2), баланс сил в вертикальном направлении для капли в целом по-прежнему не рассматривается. Поэтому в [3] делается вывод, «что семейство кривых, образующих поверхность капли, является однопараметрическим… Основным естественным параметром, определяющим семейство образующих кривых, является кривизна на вершине капли». Даже при известных значениях силы поверхностного натяжения σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaaaaa@3B23@  и объема капли авторы в [3] не могут рассчитать форму капли, так как отсутствует дополнительное уравнение, позволяющее однозначно определить значение указанного свободного параметра. Его значение в [3] предлагается рассчитывать каждый раз по данным специально проведенного по методу ADSA (Axisymmetric Drop Shape Analysis [13, 14]) эксперимента. Как будет показано ниже, этим недостающим соотношением для весомой капли как раз и является уравнение баланса сил в вертикальном направлении.

В еще более поздней работе [12] на основе решеточного метода Больцмана проводится расчет равновесной формы капли диэлектрика, покоящейся на горизонтальной плоскости и находящейся под действием сил тяжести и электростатического поля, действующих противоположно в вертикальном направлении. По сути, проводится динамический расчет капли до установившегося ее состояния после приложения к ней электростатической силы. Недостатком этой работы является то, что в качестве начальной формы капли, находящейся под действием только силы тяжести в покое на поверхности одного из горизонтально установленных электродов, авторы используют сегмент шара. Но, как уже отмечалось выше, такая форма весомой капли не удовлетворяет уравнению Лапласа (1.2). А значит, и в данной статье баланс сил в вертикальном направлении для весомой капли в ее начальном положении (до приложения электростатической силы) не учитывается, поэтому все выводы, сделанные в [12], вызывают серьезные сомнения.

На основании всего вышеизложенного в данной работе представлены результаты математического моделирования осесимметричной формы жидкой весомой капли, покоящейся в равновесном состоянии на горизонтальной поверхности, которая на данном этапе исследования предполагается идеально гладкой и недеформируемой, т.е. является плоскостью. Получены уравнения силового баланса такой капли как в горизонтальном, так и в вертикальном направлениях. Разработан численный метод решения сформулированной нелинейной задачи. Обсуждаются результаты расчетов для капель разных объемов и разного химического состава.

2. Постановка задачи. Рассматривается равновесная весомая капля жидкости осесимметричной формы, покоящаяся на идеально гладкой горизонтальной недеформируемой поверхности MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  плоскости (рис. 1). Внешняя поверхность капли, контактирующая с газом, представляет собой поверхность вращения относительно вертикальной оси Oz MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taiaadQhaaa a@396B@ , которую для удобства дальнейшего изложения направим вниз. Точку начала отсчета O MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taaaa@386C@  поместим в вершине капли MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  в ее полюсной точке. Направление, перпендикулярное Oz MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taiaadQhaaa a@396B@ , обозначим r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCaaaa@388F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  радиальное направление в цилиндрической системе координат rφz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCaiabeA8aQj aadQhaaaa@3B4A@ , где φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOXdOgaaa@3954@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  полярный угол ( 0φ<2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGimaiabgsMiJk abeA8aQjabgYda8iaaikdacqaHapaCaaa@3F40@  ). Введем вдоль меридиана внешней поверхности капли естественную параметризацию s MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Caaaa@3890@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  длину дуги меридиана (образующей), отсчитываемую от вершины капли O MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taaaa@386C@ . Тогда, согласно рис. 3, выполняются следующие геометрические соотношения [2, 15] (решение рассматриваемой осесимметричной задачи не зависит от координаты φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOXdOgaaa@3954@  ):

dr ds =sinϑ s , dz ds =cosϑ s ;s0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb GaamOCaaqaaiaadsgacaWGZbaaaiabg2da9iGacohacaGGPbGaaiOB aiabeg9aknaabmaabaGaam4CaaGaayjkaiaawMcaaiaacYcacaaMc8 UaaGPaVlaaykW7daWcaaqaaiaadsgacaWG6baabaGaamizaiaadoha aaGaeyypa0Jaci4yaiaac+gacaGGZbGaeqy0dO0aaeWaaeaacaWGZb aacaGLOaGaayzkaaGaai4oaiaaykW7caaMc8UaaGPaVlaadohacqGH LjYScaaIWaaaaa@5D73@   (2.1)

dϑ s ds = 1 R 1 s , 1 R 2 s = cosϑ s r s ;s>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb Gaeqy0dO0aaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGaamizaiaa dohaaaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaamOuamaaBa aaleaacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaaa caGGSaGaaGPaVlaaykW7caaMc8+aaSaaaeaacaaIXaaabaGaamOuam aaBaaaleaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMca aaaacqGH9aqpdaWcaaqaaiGacogacaGGVbGaai4Caiabeg9aknaabm aabaGaam4CaaGaayjkaiaawMcaaaqaaiaadkhadaqadaqaaiaadoha aiaawIcacaGLPaaaaaGaai4oaiaaykW7caaMc8UaaGPaVlaadohacq GH+aGpcaaIWaaaaa@63AB@ , (2.2)

где ϑ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqy0dO0aaeWaae aacaWGZbaacaGLOaGaayzkaaaaaa@3BC0@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  угол между касательной к меридиану поверхности капли и осью Oz MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taiaadQhaaa a@396B@ , отсчитываемый от этой оси (см. рис. 3), r s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@3B0F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  расстояние от точки на поверхности капли до оси Oz MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taiaadQhaaa a@396B@ , z s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOEamaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@3B17@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  осевая координата текущей точки на поверхности капли, R 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaIXaaabeaaaaa@3955@  и R 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaIYaaabeaaaaa@3956@  определены в равенстве (1.2) и изображены на рис. 3.

 

Рис. 3. Форма меридиана капли и его геометрические характеристики

 

На поверхность капли с внешней стороны действует давление газа p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaaaaa@3984@  (см. рис. 1 и 3), которое на данном этапе исследования предполагаем известным и постоянным при тех линейных размерах капель, которые будут рассматриваться ниже ( p G =const>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaakiabg2da9iaabogacaqGVbGaaeOBaiaabohacaqG 0bGaeyOpa4JaaGimaaaa@410C@  ). С внутренней стороны на поверхность капли действует гидростатическое давление в жидкости

p L s = p L 0 +gρz s ;s0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGmbaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabg2da 9iaadchadaqhaaWcbaGaamitaaqaaiaaicdaaaGccqGHRaWkcaWGNb GaeqyWdiNaamOEamaabmaabaGaam4CaaGaayjkaiaawMcaaiaacUda caaMc8UaaGPaVlaaykW7caWGZbGaeyyzImRaaGimaaaa@4FB7@ , (2.3)

где g=9.81 мì/с2  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  ускорение свободного падения; ρ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdihaaa@3957@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  заданная объемная плотность несжимаемой жидкости ( ρ=const>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyWdiNaeyypa0 Jaae4yaiaab+gacaqGUbGaae4CaiaabshacqGH+aGpcaaIWaaaaa@40D5@  ); p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  давление жидкости в вершине капли, так как при s=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Caiabg2da9i aaicdaaaa@3A4F@  имеем z 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOEamaabmaaba GaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3C99@ .

Используя выражения (2.2) и (2.3), преобразуем уравнение Лапласа (1.2) к виду [2, 3]

dϑ s ds = cosϑ s r s p ¯ z(s) ;s>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb Gaeqy0dO0aaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGaamizaiaa dohaaaGaeyypa0ZaaSaaaeaaciGGJbGaai4BaiaacohacqaHrpGsda qadaqaaiaadohaaiaawIcacaGLPaaaaeaacaWGYbWaaeWaaeaacaWG ZbaacaGLOaGaayzkaaaaaiabgkHiTiqadchagaqeamaabmaabaGaam OEaiaacIcacaWGZbGaaiykaaGaayjkaiaawMcaaiaacUdacaaMc8Ua aGPaVlaaykW7caWGZbGaeyOpa4JaaGimaaaa@5911@ , (2.4)

где

p ¯ z(s) p L s p G σ LG = p ¯ L 0 σ LG + gρ σ LG z s ; p ¯ L 0 p L 0 p G =const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaae WaaeaacaWG6bGaaiikaiaadohacaGGPaaacaGLOaGaayzkaaGaeyyy IO7aaSaaaeaacaWGWbWaaSbaaSqaaiaadYeaaeqaaOWaaeWaaeaaca WGZbaacaGLOaGaayzkaaGaeyOeI0IaamiCamaaBaaaleaacaWGhbaa beaaaOqaaiabeo8aZnaaBaaaleaacaWGmbGaam4raaqabaaaaOGaey ypa0ZaaSaaaeaaceWGWbGbaebadaqhaaWcbaGaamitaaqaaiaaicda aaaakeaacqaHdpWCdaWgaaWcbaGaamitaiaadEeaaeqaaaaakiabgU caRmaalaaabaGaam4zaiabeg8aYbqaaiabeo8aZnaaBaaaleaacaWG mbGaam4raaqabaaaaOGaamOEamaabmaabaGaam4CaaGaayjkaiaawM caaiaacUdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ceWG WbGbaebadaqhaaWcbaGaamitaaqaaiaaicdaaaGccqGHHjIUcaWGWb Waa0baaSqaaiaadYeaaeaacaaIWaaaaOGaeyOeI0IaamiCamaaBaaa leaacaWGhbaabeaakiabg2da9iaabogacaqGVbGaaeOBaiaabohaca qG0baaaa@766C@ , (2.5)

gρ/ σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4zaiabeg8aYj aac+cacqaHdpWCdaWgaaWcbaGaamitaiaadEeaaeqaaaaa@3E82@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  капиллярная постоянная [2], p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaaaa@3A5C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  избыточное давление в вершине капли.

Система трех нелинейных обыкновенных дифференциальных уравнений (2.1) и (2.4) при учете выражений (2.5) определяет форму меридиана поверхности осесимметричной капли при s>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Caiabg6da+i aaicdaaaa@3A51@ . В полюсной точке ( s=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Caiabg2da9i aaicdaaaa@3A4F@  ) имеет место равенство R 1 0 = R 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaaIXaaabeaakmaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da 9iaadkfadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaaicdaaiaawI cacaGLPaaaaaa@40B4@  [2, 3, 15], подставляя которое в уравнение (1.2) и используя первое равенство (2.2), получим необходимое соотношение в вершине капли

dϑ ds = p ¯ 0 2 = p ¯ L 0 2 σ LG ;s=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb Gaeqy0dOeabaGaamizaiaadohaaaGaeyypa0JaeyOeI0YaaSaaaeaa ceWGWbGbaebadaqadaqaaiaaicdaaiaawIcacaGLPaaaaeaacaaIYa aaaiabg2da9iabgkHiTmaalaaabaGabmiCayaaraWaa0baaSqaaiaa dYeaaeaacaaIWaaaaaGcbaGaaGOmaiabeo8aZnaaBaaaleaacaWGmb Gaam4raaqabaaaaOGaai4oaiaaykW7caaMc8UaaGPaVlaadohacqGH 9aqpcaaIWaaaaa@5364@  (2.6)

Таким образом, в полюсной точке вместо системы трех уравнений (2.1) и (2.4) при учете выражений (2.5) необходимо использовать равенства (2.1) и (2.6).

В соответствии с рис. 3 в вершине капли имеем следующие значения неизвестных функций:

r 0 =0,z 0 =0,ϑ 0 =π/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaabmaaba GaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOEamaabmaabaGaaGimaa GaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8Uaeqy0dO0aaeWaaeaacaaIWaaacaGLOa GaayzkaaGaeyypa0JaeqiWdaNaai4laiaaikdaaaa@5D94@  (2.7)

Обозначим через s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacqGHxiIkaeqaaaaa@39AA@  длину дуги OB вдоль меридиана капли и введем обозначения (см. рис. 1)

r r s , z z s , ϑ ϑ s , p LS p L z , θ θ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacqGHxiIkaeqaaOGaeyyyIORaamOCamaabmaabaGaam4CamaaBaaa leaacqGHxiIkaeqaaaGccaGLOaGaayzkaaGaaiilaiaaykW7caaMc8 UaaGPaVlaaykW7caWG6bWaaSbaaSqaaiabgEHiQaqabaGccqGHHjIU caWG6bWaaeWaaeaacaWGZbWaaSbaaSqaaiabgEHiQaqabaaakiaawI cacaGLPaaacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqaH rpGsdaWgaaWcbaGaey4fIOcabeaakiabggMi6kabeg9aknaabmaaba Gaam4CamaaBaaaleaacqGHxiIkaeqaaaGccaGLOaGaayzkaaGaaiil aiaaykW7caaMc8UaaGPaVlaaykW7caWGWbWaaSbaaSqaaiaadYeaca WGtbaabeaakiabggMi6kaadchadaWgaaWcbaGaamitaaqabaGcdaqa daqaaiaadQhadaWgaaWcbaGaey4fIOcabeaaaOGaayjkaiaawMcaai aacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabeI7aXnaaBaaa leaacqGHxiIkaeqaaOGaeyyyIORaeqiUde3aaeWaaeaacaWGZbWaaS baaSqaaiabgEHiQaqabaaakiaawIcacaGLPaaaaaa@855B@ , (2.8)

где функция p L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGmbaabeaaaaa@3989@  имеет выражение в (2.3), а из рис. 3 вытекает соотношение между углами

θ s =π/2ϑ s ;s0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaeWaae aacaWGZbaacaGLOaGaayzkaaGaeyypa0JaeqiWdaNaai4laiaaikda cqGHsislcqaHrpGsdaqadaqaaiaadohaaiaawIcacaGLPaaacaGG7a GaaGPaVlaaykW7caWGZbGaeyyzImRaaGimaaaa@4C63@  (2.9)

Согласно последнему равенству (2.8) при учете выражения (2.9), значение угла θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiabgEHiQaqabaaaaa@3A68@  соответствует критическому углу смачивания, который и следует в конечном итоге определить.

Предполагаем, что объем капли задан и равен V 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaaIWaaabeaakiabg6da+iaaicdaaaa@3B24@ . Каплю объема V 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaaIWaaabeaaaaa@3958@ , имеющую форму шара диаметра D 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIWaaabeaaaaa@3946@  (форма капли в невесомости), будем называть эталонной. Объем V 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaaIWaaabeaaaaa@3958@  выражается через диаметр эталонной капли D 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIWaaabeaaaaa@3946@  так:

V 0 =π D 0 3 /6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaaIWaaabeaakiabg2da9iabec8aWjaadseadaqhaaWcbaGaaGim aaqaaiaaiodaaaGccaGGVaGaaGOnaaaa@400F@  (2.10)

Вес капли определяется по формуле

G 0 =gρ V 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4ramaaBaaale aacaaIWaaabeaakiabg2da9iaadEgacqaHbpGCcaWGwbWaaSbaaSqa aiaaicdaaeqaaaaa@3EC6@  (2.11)

Объем V капли, покоящейся на горизонтальной плоскости, должен быть равен V 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaaIWaaabeaaaaa@3958@ , поэтому, согласно рис. 1, имеем соотношение [2]

V=π 0 z r 2 dz =π 0 s r 2 s cosϑ s ds = V 0 =const>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvaiabg2da9i abec8aWnaapehabaGaamOCamaaCaaaleqabaGaaGOmaaaakiaadsga caWG6baaleaacaaIWaaabaGaamOEamaaBaaameaacqGHxiIkaeqaaa qdcqGHRiI8aOGaeyypa0JaeqiWda3aa8qCaeaacaWGYbWaaWbaaSqa beaacaaIYaaaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaci4yai aac+gacaGGZbGaeqy0dO0aaeWaaeaacaWGZbaacaGLOaGaayzkaaGa amizaiaadohaaSqaaiaaicdaaeaacaWGZbWaaSbaaWqaaiabgEHiQa qabaaaniabgUIiYdGccqGH9aqpcaWGwbWaaSbaaSqaaiaaicdaaeqa aOGaeyypa0Jaae4yaiaab+gacaqGUbGaae4CaiaabshacqGH+aGpca aIWaaaaa@63EA@  (2.12)

Как видно из равенств (2.5) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (2.7), решение соответствующей задачи Коши (для уравнений (2.1) и (2.4) при учете соотношения (2.6)) зависит от свободного пока параметра p ¯ 0 = p ¯ L 0 / σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaae WaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0JabmiCayaaraWaa0ba aSqaaiaadYeaaeaacaaIWaaaaOGaai4laiabeo8aZnaaBaaaleaaca WGmbGaam4raaqabaaaaa@42FB@ , который, используя первое равенство (2.2) и формулу (2.6), можно выразить через кривизну меридиана капли в ее вершине: p ¯ L 0 / σ LG =2 κ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaOGaai4laiabeo8aZnaaBaaaleaa caWGmbGaam4raaqabaGccqGH9aqpcaaIYaGaeqOUdS2aaSbaaSqaai aaicdaaeqaaaaa@4309@ , где κ 0 1/ R 1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOUdS2aaSbaaS qaaiaaicdaaeqaaOGaeyyyIORaaGymaiaac+cacaWGsbWaaSbaaSqa aiaaigdaaeqaaOWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaaaa@417B@ .

Именно о такой однопараметрической зависимости (от κ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOUdS2aaSbaaS qaaiaaicdaaeqaaaaa@3A2F@  ) формы капли упоминалось в разд. 1 при обсуждении результатов работы [3]. Для однозначного определения величины κ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOUdS2aaSbaaS qaaiaaicdaaeqaaaaa@3A2F@  в [3] предлагается численно интегрировать нелинейную задачу Коши (2.1), (2.4) и (2.7) при учете соотношений (2.5) и (2.6) до тех пор, пока не будет выполнено равенство (2.12), которое и определяет значение s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacqGHxiIkaeqaaaaa@39AA@  при учете обозначений (2.8). Далее, параметр κ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOUdS2aaSbaaS qaaiaaicdaaeqaaaaa@3A2F@  итерационно подбирается так, чтобы при его искомом значении выполнялось последнее равенство (2.8) при учете выражения (2.9). При этом величина критического угла смачивания θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiabgEHiQaqabaaaaa@3A68@  предполагается уже известной из предварительно проведенного эксперимента с обработкой его результатов по методу ADSA [13, 14].

Покажем, что в действительности проведение такого дополнительного эксперимента не является необходимостью. Для однозначного определения значения рассматриваемого параметра ( κ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOUdS2aaSbaaS qaaiaaicdaaeqaaaaa@3A2F@  или, что то же самое, p ¯ L 0 / σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaOGaai4laiabeo8aZnaaBaaaleaa caWGmbGaam4raaqabaaaaa@3EA5@  ) достаточно получить еще одно уравнение. Этим уравнением является баланс сил, действующих на весомую каплю заданного объема в вертикальном направлении. С целью вывода требуемого соотношения используем традиционный в механике метод сечения, а именно мысленно отсечем каплю от подложки (вдоль горизонтальной линии AB на рис. 1) и рассмотрим систему сил, приложенных к капле (рис. 4), заменив воздействие основания на каплю распределенными силами реакции p SL = p SL r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaGccqGH9aqpcaWGWbWaaSbaaSqaaiaadofa caWGmbaabeaakmaabmaabaGaamOCaaGaayjkaiaawMcaaaaa@40C5@ , 0r r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGimaiabgsMiJk aadkhacqGHKjYOcaWGYbWaaSbaaSqaaiabgEHiQaqabaaaaa@3EC4@ .

 

Рис. 4. Меридиональное сечение капли с краевым углом смачивания меньше 90° и система сил, приложенных к ней

 

На каплю действуют активные силы: ее вес G 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4ramaaBaaale aacaaIWaaabeaaaaa@3949@  и давление газа p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaaaaa@3984@ , которые можно привести к равнодействующей силе

P a = G 0 +π r 2 p G >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaWGHbaabeaakiabg2da9iaadEeadaWgaaWcbaGaaGimaaqabaGc cqGHRaWkcqaHapaCcaWGYbWaa0baaSqaaiabgEHiQaqaaiaaikdaaa GccaWGWbWaaSbaaSqaaiaadEeaaeqaaOGaeyOpa4JaaGimaaaa@457B@  (2.13)

Активным силам противодействуют силы реакции со стороны подложки p SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A61@ .

Рассмотрим два способа получения дополнительного уравнения, необходимого для вычисления критического угла смачивания θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiabgEHiQaqabaaaaa@3A68@ , один из которых базируется на рассмотрении баланса сил в краевой точке B (см. рис. 2), а второй способ не требует отдельного рассмотрения условий равновесия в этой точки.

Первый способ получения дополнительного уравнения. Так как вдоль плоскости контакта капли с основанием в ней действует сила поверхностного натяжения σ LS =const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGtbaabeaakiabg2da9iaabogacaqGVbGaaeOBaiaa bohacaqG0baaaa@40F5@  (см. рис. 1 и 4), то для этой (нижней, опорной) части поверхности капли также можно составить уравнение Лапласа, аналогичное (1.2):

σ LS 1/ R 1 b +1/ R 2 b = p SL p LS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGtbaabeaakmaabmaabaGaaGymaiaac+cacaWGsbWa a0baaSqaaiaaigdaaeaacaqGIbaaaOGaey4kaSIaaGymaiaac+caca WGsbWaa0baaSqaaiaaikdaaeaacaqGIbaaaaGccaGLOaGaayzkaaGa eyypa0JaamiCamaaBaaaleaacaWGtbGaamitaaqabaGccqGHsislca WGWbWaaSbaaSqaaiaadYeacaWGtbaabeaaaaa@4D6E@ , (2.14)

где R 1 b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaaIXaaabaGaaeOyaaaaaaa@3A3B@  и R 2 b MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaaIYaaabaGaaeOyaaaaaaa@3A3C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  радиусы главной кривизны поверхности основания, силы p SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A61@  и p LS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGmbGaam4uaaqabaaaaa@3A61@  изображены на рис. 1 и 4. Так как поверхность подложки является плоскостью, то 1/ R 1 b =1/ R 2 b 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGymaiaac+caca WGsbWaa0baaSqaaiaaigdaaeaacaqGIbaaaOGaeyypa0JaaGymaiaa c+cacaWGsbWaa0baaSqaaiaaikdaaeaacaqGIbaaaOGaeyyyIORaaG imaaaa@4359@ . Поэтому из соотношения (2.14) получаем

p SL = p LS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaGccqGH9aqpcaWGWbWaaSbaaSqaaiaadYea caWGtbaabeaaaaa@3E3B@  (2.15)

Согласно же предпоследнему равенству (2.8) и выражению (2.3), из уравнения (2.15) следует

p SL = p L 0 +gρ z =const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaGccqGH9aqpcaWGWbWaa0baaSqaaiaadYea aeaacaaIWaaaaOGaey4kaSIaam4zaiabeg8aYjaadQhadaWgaaWcba Gaey4fIOcabeaakiabg2da9iaabogacaqGVbGaaeOBaiaabohacaqG 0baaaa@4996@ , (2.16)

т.е. распределенная реакция со стороны основания p SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A61@  не зависит от полярного радиуса r.

Покажем: предположение о том, что кроме p SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A61@  никакие силы реакции со стороны подложки на каплю не действуют, является неверным. С этой целью рассмотрим произвольный элемент площади основания капли dS=rdrdφ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamizaiaadofacq GH9aqpcaWGYbGaamizaiaadkhacaWGKbGaeqOXdOgaaa@3FDB@ . Снизу на этот элемент действует распределенная сила реакции опоры, по значению равная (2.16). Чтобы эта сила реакции была полностью уравновешена активными силами, действующими на жидкость, необходимо, чтобы столб жидкости, возвышающийся над этой площадкой, имел высоту z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOEamaaBaaale aacqGHxiIkaeqaaaaa@39B1@  (см. прямоугольник, выделенный на рис. 4 штриховыми линиями и по горизонтали ограниченный сечениями с координатами r и r+dr MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCaiabgUcaRi aadsgacaWGYbaaaa@3B50@  ) и чтобы сверху на него действовало давление газа, имеющее значение p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@  (см. штриховые стрелки на рис. 4). Но тогда силы реакции (2.16), действующие на всю нижнюю поверхность капли ( 0r r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGimaiabgsMiJk aadkhacqGHKjYOcaWGYbWaaSbaaSqaaiabgEHiQaqabaaaaa@3EC4@ , 0φ<2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGimaiabgsMiJk abeA8aQjabgYda8iaaikdacqaHapaCaaa@3F40@  и z= z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOEaiabg2da9i aadQhadaWgaaWcbaGaey4fIOcabeaaaaa@3BB6@  ) могут быть уравновешены активными силами только в том случае, если над основанием капли возвышается цилиндр жидкости радиуса r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacqGHxiIkaeqaaaaa@39A9@  и высотой z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOEamaaBaaale aacqGHxiIkaeqaaaaa@39B1@  (след этого цилиндра на рис. 4 изображен штриховым прямоугольником ABCD), а на верхнюю горизонтальную плоскость этого цилиндра действует давление газа, равное p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@ . Так как в вершине капли (при s=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Caiabg2da9i aaicdaaaa@3A4F@  ) ее кривизна ненулевая ( 1/ R 1 =1/ R 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGymaiaac+caca WGsbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGymaiaac+cacaWG sbWaaSbaaSqaaiaaikdaaeqaaOGaeyOpa4JaaGimaaaa@40CC@  ) и σ LG >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaakiabg6da+iaaicdaaaa@3CEF@ , то из уравнения Лапласа (1.2) в этой точке получаем неравенство

p L 0 > p G >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaakiabg6da+iaadchadaWgaaWcbaGaam4r aaqabaGccqGH+aGpcaaIWaaaaa@3F0F@  (2.17)

Равнодействующая активных сил, приложенных к рассматриваемому цилиндру в вертикальном направлении, имеет значение

P c = G c +π r 2 p L 0 >0; G c =gρ V c , V c =π r 2 z , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaWGJbaabeaakiabg2da9iaadEeadaWgaaWcbaGaam4yaaqabaGc cqGHRaWkcqaHapaCcaWGYbWaa0baaSqaaiabgEHiQaqaaiaaikdaaa GccaWGWbWaa0baaSqaaiaadYeaaeaacaaIWaaaaOGaeyOpa4JaaGim aiaacUdacaaMc8UaaGPaVlaaykW7caaMc8Uaam4ramaaBaaaleaaca WGJbaabeaakiabg2da9iaadEgacqaHbpGCcaWGwbWaaSbaaSqaaiaa dogaaeqaaOGaaiilaiaaykW7caaMc8UaaGPaVlaadAfadaWgaaWcba Gaam4yaaqabaGccqGH9aqpcqaHapaCcaWGYbWaa0baaSqaaiabgEHi QaqaaiaaikdaaaGccaWG6bWaaSbaaSqaaiabgEHiQaqabaGccaGGSa aaaa@64A5@  (2.18)

где G c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4ramaaBaaale aacaWGJbaabeaaaaa@3977@  и V c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaWGJbaabeaaaaa@3986@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вес и объем цилиндра.

Из рис. 4 видно, что объем цилиндра V c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaWGJbaabeaaaaa@3986@  больше объема капли V 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaaIWaaabeaaaaa@3958@ , а значит для случая, изображенного на рис. 4, и G c > G 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4ramaaBaaale aacaWGJbaabeaakiabg6da+iaadEeadaWgaaWcbaGaaGimaaqabaaa aa@3C3B@ . Но тогда из сопоставления выражений (2.13) и (2.18) при учете неравенства (2.17) следует P c P a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaWGJbaabeaakiabgcMi5kaadcfadaWgaaWcbaGaamyyaaqabaaa aa@3D38@ . А это неравенство означает, что кроме распределенных сил реакции p SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A61@  (см. соотношение (2.16)) на каплю со стороны основания в краевых точках (см. точки A и B на рис. 4) должны действовать дополнительные погонные силы реакции R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacqGHxiIkaeqaaaaa@3989@ , имеющие ненулевые компоненты R r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGYbaabaGaey4fIOcaaaaa@3A81@ , R z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaey4fIOcaaaaa@3A89@  и в общем случае некасательные к меридиану капли в этих точках и к линии ее основания AB.

Полученный результат не является столь уж неожиданным. Действительно, как отмечалось в разд. 1, даже в рамках классической модели Юнга баланс сил в вертикальном направлении приводит к необходимости введения дополнительной силы реакции R z A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaamyqaaaaaaa@3A60@  (см. выражение (1.3)), приложенной к краевой точке капли (см. точку A на рис. 1). В рассматриваемой же модели силы поверхностного натяжения σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaaaaa@3B23@  и σ LS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGtbaabeaaaaa@3B2F@ , действующие в жидкости на границах с газом и твердой подложкой соответственно, стремятся свернуть каплю в шар. И именно наличие погонной силы реакции со стороны подложки R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacqGHxiIkaeqaaaaa@3989@ , приложенной к краевой точке (точке B на рис. 2) препятствует этому свертыванию.

Для вычисления вертикальной компоненты R z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaey4fIOcaaaaa@3A89@  силы реакции R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacqGHxiIkaeqaaaaa@3989@  достаточно составить баланс сил, действующих на каплю в вертикальном направлении и изображенных на рис. 4:

2π r R z π r 2 p SL + P a =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmaiabec8aWj aadkhadaWgaaWcbaGaey4fIOcabeaakiaadkfadaqhaaWcbaGaamOE aaqaaiabgEHiQaaakiabgkHiTiabec8aWjaadkhadaqhaaWcbaGaey 4fIOcabaGaaGOmaaaakiaadchadaWgaaWcbaGaam4uaiaadYeaaeqa aOGaey4kaSIaamiuamaaBaaaleaacaWGHbaabeaakiabg2da9iaaic daaaa@4C12@ ,

откуда при учете выражений (2.13) и (2.16) и последнего равенства (2.5) получаем

R z = r 2 p ¯ L 0 +gρ z G 0 2π r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaey4fIOcaaOGaeyypa0ZaaSaaaeaacaWGYbWaaSba aSqaaiabgEHiQaqabaaakeaacaaIYaaaamaabmaabaGabmiCayaara Waa0baaSqaaiaadYeaaeaacaaIWaaaaOGaey4kaSIaam4zaiabeg8a YjaadQhadaWgaaWcbaGaey4fIOcabeaaaOGaayjkaiaawMcaaiabgk HiTmaalaaabaGaam4ramaaBaaaleaacaaIWaaabeaaaOqaaiaaikda cqaHapaCcaWGYbWaaSbaaSqaaiabgEHiQaqabaaaaaaa@4FCF@  (2.19)

Рассмотрим теперь баланс сил в краевой точке капли (в точке B на рис. 1). Увеличенная окрестность этой точки изображена на рис. 2,а. На краевую точку действуют силы поверхностного натяжения σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaaaaa@3B23@ , σ LS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGtbaabeaaaaa@3B2F@ , σ SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGmbaabeaaaaa@3B2F@  и σ SG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGhbaabeaaaaa@3B2A@ , а также две силы реакции: сила R L R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGmbaabaGaey4fIOcaaOGaeyyyIORaamOuamaaBaaaleaacqGH xiIkaeqaaaaa@3E20@ , действующая на каплю со стороны подложки, и сила R S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGtbaabaGaey4fIOcaaaaa@3A62@ , действующая на подложку со стороны капли. Распределенные силы p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaaaaa@3984@ , p L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGmbaabeaaaaa@3989@ , p LS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGmbGaam4uaaqabaaaaa@3A61@  и p SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A61@  (см. рис. 1) на рис. 2 не изображены, так как после стягивания окрестности краевой точки в саму эту точку указанные силы вносят исчезающе малый вклад в баланс сил, приложенных к точке B.

После применения описанного выше метода сечений окрестность краевой точки, изображенная на рис. 2,а, разделяется на две части, представленные на рис. 2,б и в, где указаны и соответствующие системы сил, действующих на точку B в капле (см. рис. 2,б) и в подложке (см. рис. 2,в). Из рис. 2,б следует, что баланс сил, приложенных к краевой точке капли и действующих в вертикальном направлении, приводит к равенству (ср. с формулой (1.3))

R z = σ LG sin θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaey4fIOcaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaa dYeacaWGhbaabeaakiGacohacaGGPbGaaiOBaiabeI7aXnaaBaaale aacqGHxiIkaeqaaaaa@44D8@ ,

откуда при учете выражения (2.19) получаем

2π σ LG r sin θ =π r 2 p ¯ L 0 +gρ z G 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmaiabec8aWj abeo8aZnaaBaaaleaacaWGmbGaam4raaqabaGccaWGYbWaaSbaaSqa aiabgEHiQaqabaGcciGGZbGaaiyAaiaac6gacqaH4oqCdaWgaaWcba Gaey4fIOcabeaakiabg2da9iabec8aWjaadkhadaqhaaWcbaGaey4f IOcabaGaaGOmaaaakmaabmaabaGabmiCayaaraWaa0baaSqaaiaadY eaaeaacaaIWaaaaOGaey4kaSIaam4zaiabeg8aYjaadQhadaWgaaWc baGaey4fIOcabeaaaOGaayjkaiaawMcaaiabgkHiTiaadEeadaWgaa WcbaGaaGimaaqabaaaaa@57BA@  (2.20)

Уравнение (2.20) и является тем самым недостающим соотношением, необходимым для однозначного определения свободного параметра p ¯ L 0 / σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaOGaai4laiabeo8aZnaaBaaaleaa caWGmbGaam4raaqabaaaaa@3EA5@  ( =2 κ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyypa0JaaGOmai abeQ7aRnaaBaaaleaacaaIWaaabeaaaaa@3BF1@  ), о котором шла речь выше. Используя выражение (2.9) равенство (2.20) можно переписать, выделив в нем в явном виде указанный параметр:

2π r cos ϑ π r 2 p ¯ L 0 / σ LG +gρ z / σ LG + G 0 / σ LG =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmaiabec8aWj aadkhadaWgaaWcbaGaey4fIOcabeaakiGacogacaGGVbGaai4Caiab eg9aknaaBaaaleaacqGHxiIkaeqaaOGaeyOeI0IaeqiWdaNaamOCam aaDaaaleaacqGHxiIkaeaacaaIYaaaaOWaaeWaaeaaceWGWbGbaeba daqhaaWcbaGaamitaaqaaiaaicdaaaGccaGGVaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaakiabgUcaRiaadEgacqaHbpGCcaWG6bWa aSbaaSqaaiabgEHiQaqabaGccaGGVaGaeq4Wdm3aaSbaaSqaaiaadY eacaWGhbaabeaaaOGaayjkaiaawMcaaiabgUcaRiaadEeadaWgaaWc baGaaGimaaqabaGccaGGVaGaeq4Wdm3aaSbaaSqaaiaadYeacaWGhb aabeaakiabg2da9iaaicdaaaa@6292@  (2.21)

Баланс сил, действующих на краевую точку капли в горизонтальном направлении, приводит к выражению (см. рис. 2,б)

R r = σ LS + σ LG cos θ = σ LS + σ LG sin ϑ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGYbaabaGaey4fIOcaaOGaeyypa0Jaeq4Wdm3aaSbaaSqaaiaa dYeacaWGtbaabeaakiabgUcaRiabeo8aZnaaBaaaleaacaWGmbGaam 4raaqabaGcciGGJbGaai4BaiaacohacqaH4oqCdaWgaaWcbaGaey4f IOcabeaakiabg2da9iabeo8aZnaaBaaaleaacaWGmbGaam4uaaqaba GccqGHRaWkcqaHdpWCdaWgaaWcbaGaamitaiaadEeaaeqaaOGaci4C aiaacMgacaGGUbGaeqy0dO0aaSbaaSqaaiabgEHiQaqabaaaaa@5814@ , (2.22)

где вновь использована формула (2.9).

Из третьего закона Ньютона при рассмотрении всех сил, действующих в вертикальном направлении на подложку со стороны капли, и при учете равенства (2.15) получаем, что для вертикальной компоненты R z S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaam4uaaaaaaa@3A72@  силы реакции R S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGtbaabaGaey4fIOcaaaaa@3A62@ , действующей на основание со стороны капли в краевой точке (см. рис. 2,а и в), выполняется соотношение

R z S = R z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaam4uaaaakiabg2da9iaadkfadaqhaaWcbaGaamOE aaqaaiabgEHiQaaaaaa@3E74@ , (2.23)

где величина R z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaey4fIOcaaaaa@3A89@  определяется по формуле (2.19).

Баланс сил, изображенных на рис. 2,в и действующих в горизонтальном направлении, позволяет определить горизонтальную компоненту R r S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGYbaabaGaam4uaaaaaaa@3A6A@  силы реакции R S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGtbaabaGaey4fIOcaaaaa@3A62@ :

R r S = σ SG σ SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGYbaabaGaam4uaaaakiabg2da9iabeo8aZnaaBaaaleaacaWG tbGaam4raaqabaGccqGHsislcqaHdpWCdaWgaaWcbaGaam4uaiaadY eaaeqaaaaa@439C@ , (2.24)

где правая часть совпадает с числителем в формуле (1.1), т.е. в модели Юнга.

Таким образом, если из каких-либо соображений известен критический угол смачивания θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiabgEHiQaqabaaaaa@3A68@  (подробнее см. ниже), то выражения (2.19) и (2.22) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (2.24) позволяют определить все компоненты R z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaey4fIOcaaaaa@3A89@ , R r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGYbaabaGaey4fIOcaaaaa@3A81@  и R z S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaam4uaaaaaaa@3A72@ , R r S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGYbaabaGaam4uaaaaaaa@3A6A@  погонных сил реакции R L R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGmbaabaGaey4fIOcaaOGaeyyyIORaamOuamaaBaaaleaacqGH xiIkaeqaaaaa@3E20@  и R S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGtbaabaGaey4fIOcaaaaa@3A62@ , действующих в краевой точке на каплю со стороны основания и на подложку со стороны капли соответственно.

Второй способ получения дополнительного уравнения. Как и прежде, применим метод сечений, отделив мысленно каплю от основания, и рассмотрим равновесие капли без подложки (рис. 5, где в отличие от рис. 4 изображен случай θ > 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiabgEHiQaqabaGccqGH+aGpcaaI5aGaaGimamaaCaaaleqabaGa eSigI8gaaaaa@3E5E@  ). На нижнюю горизонтальную часть поверхности капли по-прежнему действуют силы реакции p SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A61@ , закон распределения которых по радиусу r на данном этапе предполагается неизвестным: p SL = p SL r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaGccqGH9aqpcaWGWbWaaSbaaSqaaiaadofa caWGmbaabeaakmaabmaabaGaamOCaaGaayjkaiaawMcaaaaa@40C5@ , 0r r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGimaiabgsMiJk aadkhacqGHKjYOcaWGYbWaaSbaaSqaaiabgEHiQaqabaaaaa@3EC4@  (поэтому-то силы p SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A61@  на рис. 5,а изображены стрелками разной длины). Равнодействующую распределенных сил p SL r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaGcdaqadaqaaiaadkhaaiaawIcacaGLPaaa aaa@3CEB@  обозначим как P SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A41@  (см. рис. 5,а). И хотя функция p SL r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaGcdaqadaqaaiaadkhaaiaawIcacaGLPaaa aaa@3CEB@  неизвестна величину P SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A41@  все же можно вычислить из условия равновесия капли в вертикальном направлении:

P SL = P a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaWGtbGaamitaaqabaGccqGH9aqpcaWGqbWaaSbaaSqaaiaadgga aeqaaaaa@3D38@ , (2.25)

где P a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaWGHbaabeaaaaa@397E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  равнодействующая активных сил (действующих на каплю в вертикальном направлении), определяемая по формуле (2.13). На участках меридиана AA′D и BB′C (см. рис. 5,а) давление газа p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaaaaa@3984@  в вертикальном направлении самоуравновешено, поэтому вклад в вертикальную составляющую всех активных сил вносит давление газа p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaaaaa@3984@ , действующее на участок меридиана COD. В силу этого обстоятельства величина P a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaWGHbaabeaaaaa@397E@  имеет такое же выражение (2.13), как и в случае капли, изображенной на рис. 1 и 4, для которой θ < 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiabgEHiQaqabaGccqGH8aapcaaI5aGaaGimamaaCaaaleqabaGa eSigI8gaaaaa@3E5A@ .

 

Рис. 5. Профиль капли с краевым углом смачивания больше 90° (а) и нижняя часть этой капли после применения метода сечения (б) с указанием системы сил, приложенных к ней

 

Вновь применим метод сечений: мысленно рассечем каплю горизонтальной плоскостью, отстоящей от ее основания на малом расстоянии δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiTdqgaaa@393C@  (след этой плоскости изображен на рис. 5,а штриховой линией A′B′), и рассмотрим нижнюю часть капли, приложив к ней все действующие на нее силы (рис. 5,б). Точкой O MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4tamaaBaaale aacqGHxiIkaeqaaaaa@3986@  на рис. 5 обозначена точка пересечения оси Oz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taiaadQhaaa a@396A@  с плоскостью основания капли (см. рис. 5,а). В силу осевой симметрии задачи к этой точке приложена равнодействующая сил реакции подложки P SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A41@  (см. рис. 5,б). Кроме того, в верхнем сечении рассматриваемой нижней части капли действуют распределенная сила гидростатического давления p L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGmbaabeaaaaa@3989@  и погонные силы поверхностного натяжения σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaaaaa@3B23@ . Устремим расстояние между двумя горизонтальными сечениями δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiTdqgaaa@393C@  к нулю, т.е. рассмотрим предельные переходы точек A A MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmyqayaafaGaey OKH4Qaamyqaaaa@3B1C@  и B B MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmOqayaafaGaey OKH4QaamOqaaaa@3B1E@ . При этом получим, что p L p LS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGmbaabeaakiabgkziUkaadchadaWgaaWcbaGaamitaiaadofa aeqaaaaa@3E4A@  (см. рис. 1). Составим баланс всех вертикальных сил, изображенных на рис. 5,б, тогда при указанном предельном переходе получаем

P SL +2π r σ LG sin θ π r 2 p LS =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaWGtbGaamitaaqabaGccqGHRaWkcaaIYaGaeqiWdaNaamOCamaa BaaaleaacqGHxiIkaeqaaOGaeq4Wdm3aaSbaaSqaaiaadYeacaWGhb aabeaakiGacohacaGGPbGaaiOBaiabeI7aXnaaBaaaleaacqGHxiIk aeqaaOGaeyOeI0IaeqiWdaNaamOCamaaDaaaleaacqGHxiIkaeaaca aIYaaaaOGaamiCamaaBaaaleaacaWGmbGaam4uaaqabaGccqGH9aqp caaIWaaaaa@5322@ ,

откуда при учете обозначения p LS p L s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGmbGaam4uaaqabaGccqGHHjIUcaWGWbWaaSbaaSqaaiaadYea aeqaaOWaaeWaaeaacaWGZbWaaSbaaSqaaiabgEHiQaqabaaakiaawI cacaGLPaaaaaa@41D6@  и выражений (2.3), (2.13) и (2.25) вновь приходим к уравнению (2.20), а затем и к равенству (2.21).

Далее, из уравнения Лапласа (2.14) вновь получаем соотношения (2.15) и (2.16). Предполагая, что критический угол смачивания θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiabgEHiQaqabaaaaa@3A68@  каким-то образом уже известен из решения исследуемой задачи при учете дополнительного уравнения (2.20) (подробнее см. ниже), и рассматривая баланс сил в краевой точке капли (см. рис. 2,б) опять получим равенство, предшествующее формуле (2.20), и выражение (2.22). Затем из рассмотрения баланса сил, приложенных к подложке в краевой точке (см. рис. 2,в), вновь придем к соотношениям (2.23) и (2.24).

Таким образом, оба способа получения дополнительного уравнения приводят к одним и тем же результатам, только последовательность получения этих результатов в них разная.

Следует особо подчеркнуть, что с позиции теории оболочек уравнения Лапласа (1.2) и (2.14) можно трактовать как уравнения равновесия элементов составной равнопрочной безмоментной оболочки, заполненной весомой жидкостью. При этом коэффициенты поверхностного натяжения σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaaaaa@3B23@  и σ LS MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGtbaabeaaaaa@3B2F@  можно трактовать как мембранные усилия в этой оболочке [16]. В краевой точке капли ее меридиан испытывает излом (см. точки A и B на рис. 4 и 5,а), т.е. по линии границы области контакта капли с подложкой происходит сопряжение двух частей «составной оболочки»: нижней плоской части (след ее изображен горизонтальной линией AB на рис. 4 и 5,а) с мембранными усилиями, равными σ LS =const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGtbaabeaakiabg2da9iaabogacaqGVbGaaeOBaiaa bohacaqG0baaaa@40F5@ , и верхней изогнутой части (след ее изображен кривой AOB на рис. 4 и 5,а) с мембранными усилиями, равными σ LG =const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaakiabg2da9iaabogacaqGVbGaaeOBaiaa bohacaqG0baaaa@40E9@ . Из теории тонких оболочек известно, что при сопряжении двух частей составной безмоментной оболочки к линии сопряжения обязательно должна быть приложена специально подобранная погонная сила (в противном случае невозможно добиться безмоментного состояния в обеих частях конструкции), в общем случае некасательная к обеим сопрягаемым поверхностям [16]. В проведенных выше рассуждениях эта погонная сила соответствует силе реакции R L R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGmbaabaGaey4fIOcaaOGaeyyyIORaamOuamaaBaaaleaacqGH xiIkaeqaaaaa@3E20@ , изображенной на рис. 2,а,б, 4 и имеющей компоненты R z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaey4fIOcaaaaa@3A89@  и R r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGYbaabaGaey4fIOcaaaaa@3A81@ .

С другой стороны, из теории изгибаемых элементов конструкций, покоящихся на упругом основании, известно, что на поверхности контакта этих конструкций с основанием возникают распределенные силы реакции со стороны основания, которые аналогичны давлению p SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A61@  в рассматриваемой задаче (см. рис. 1, 4 и 5,а). Если при этом конструкция сопрягается с основанием негладко на границе контактной области (изгибаемые балки и пластины, покоящиеся на основании), то вдоль линии границы контактной зоны дополнительно возникают погонные силы реакции [17], которым в рассматриваемой задаче соответствует сила R z S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaam4uaaaaaaa@3A72@ , изображенная на рис. 2,в. Качественно аналогичный результат имеет место и в общеизвестной задаче о вдавливании абсолютно жесткого плоского штампа в упругое полупространство: на границе контактной области под штампом силы реакции со стороны полупространства имеют особенность типа бесконечности [18]. В некотором приближении такое специфическое поведение сил реакции основания также можно трактовать как приложение погонной силы к линии границы контактной зоны под штампом, аналогичной силе R z S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaam4uaaaaaaa@3A72@ .

Таким образом, с позиций механики деформируемого твердого тела появление в краевой точке капли дополнительных сил R L R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGmbaabaGaey4fIOcaaOGaeyyyIORaamOuamaaBaaaleaacqGH xiIkaeqaaaaa@3E20@  и R S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGtbaabaGaey4fIOcaaaaa@3A62@ , приложенных к самой капле и к подложке под ней, является вполне естественным. Однако в отличие от задач о штампе [18] и об изгибе элементов конструкций, покоящихся на упругом основании [17], в данном исследовании в силу учета поверхностного натяжения подложки (см. коэффициенты натяжения σ SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGmbaabeaaaaa@3B2F@  и σ SG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGhbaabeaaaaa@3B2A@  на рис. 2,в) погонная сила реакции R S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGtbaabaGaey4fIOcaaaaa@3A62@  имеет не только вертикальную R z S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWG6baabaGaam4uaaaaaaa@3A72@ , но и горизонтальную R r S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaDaaale aacaWGYbaabaGaam4uaaaaaaa@3A6A@  составляющую.

3. Метод расчета. Для расчета формы жидкой весомой капли, покоящейся на горизонтальной плоскости, система уравнений (2.1) и (2.4) при учете соотношений (2.3), (2.5) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (2.7), (2.10) и при некотором заданном значении свободного параметра p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@  (см. формулы (2.3), (2.5) и (2.21)) интегрируется вдоль s до тех пор, пока не будет устранена невязка в равенстве (2.12). Выполнение этого равенства, как и в [3], определяет длину меридиана капли s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacqGHxiIkaeqaaaaa@39AA@  при фиксированном значении p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@ , т.е. имеет место зависимость s = s p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacqGHxiIkaeqaaOGaeyypa0Jaam4CamaaBaaaleaacqGHxiIkaeqa aOWaaeWaaeaacaWGWbWaa0baaSqaaiaadYeaaeaacaaIWaaaaaGcca GLOaGaayzkaaaaaa@4117@ . Однако при произвольно выбранном значении p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@  не будет удовлетворяться равенство (2.21). Поэтому необходимо подобрать давление жидкости в вершине капли p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@  так, чтобы при s= s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Caiabg2da9i aadohadaWgaaWcbaGaey4fIOcabeaaaaa@3BA8@ , т.е. при выполнении равенства (2.12), выполнялось одновременно и равенство (2.21), которое ранее другими исследователями не использовалось. Следовательно, необходимо проводить пристрелку по параметру p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@  [19]. Для этого предварительно нужно определить диапазон допустимых значений свободного параметра p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@ .

Согласно рис. 1, 4, 5,а и формулам (1.2), (2.3) и (2.6), давление p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@  не может быть меньше давления газа p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaaaaa@3984@ . Поэтому при p L 0 = p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaakiabg2da9iaadchadaWgaaWcbaGaam4r aaqabaaaaa@3D41@  получаем

1 R 1 0 = 1 R 2 0 = p ¯ 0 2 = p L 0 p G 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaaIXa aabaGaamOuamaaBaaaleaacaaIXaaabeaakmaabmaabaGaaGimaaGa ayjkaiaawMcaaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGsbWaaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaa aiabg2da9maalaaabaGabmiCayaaraWaaeWaaeaacaaIWaaacaGLOa GaayzkaaaabaGaaGOmaaaacqGH9aqpdaWcaaqaaiaadchadaqhaaWc baGaamitaaqaaiaaicdaaaGccqGHsislcaWGWbWaaSbaaSqaaiaadE eaaeqaaaGcbaGaaGOmaaaacqGH9aqpcaaIWaaaaa@5099@  (3.1)

С другой стороны, кривизна весомой капли в полярной точке s=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Caiabg2da9i aaicdaaaa@3A4F@  не может быть больше, чем у эталонной капли в форме шара того же объема V 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaaIWaaabeaaaaa@3958@ , для которой, согласно формулам (1.2) и (2.3), имеем

1 R 1 0 + 1 R 2 0 = 4 D 0 = p L 0 p G σ LG = p L 0 p G σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaaIXa aabaGaamOuamaaBaaaleaacaaIXaaabeaakmaabmaabaGaaGimaaGa ayjkaiaawMcaaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGsbWaaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaaIWaaacaGLOaGaayzkaaaa aiabg2da9maalaaabaGaaGinaaqaaiaadseadaWgaaWcbaGaaGimaa qabaaaaOGaeyypa0ZaaSaaaeaacaWGWbWaaSbaaSqaaiaadYeaaeqa aOWaaeWaaeaacaaIWaaacaGLOaGaayzkaaGaeyOeI0IaamiCamaaBa aaleaacaWGhbaabeaaaOqaaiabeo8aZnaaBaaaleaacaWGmbGaam4r aaqabaaaaOGaeyypa0ZaaSaaaeaacaWGWbWaa0baaSqaaiaadYeaae aacaaIWaaaaOGaeyOeI0IaamiCamaaBaaaleaacaWGhbaabeaaaOqa aiabeo8aZnaaBaaaleaacaWGmbGaam4raaqabaaaaaaa@5BBF@ ,

откуда следует

p L 0 = p G + 4 σ LG D 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaakiabg2da9iaadchadaWgaaWcbaGaam4r aaqabaGccqGHRaWkdaWcaaqaaiaaisdacqaHdpWCdaWgaaWcbaGaam itaiaadEeaaeqaaaGcbaGaamiramaaBaaaleaacaaIWaaabeaaaaaa aa@4440@  (3.2)

На основании соотношений (3.1) и (3.2) получаем диапазон изменения свободного параметра p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@  для весомой капли, покоящейся на горизонтальном основании:

p G p L 0 p G + 4 σ LG D 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaakiabgsMiJkaadchadaqhaaWcbaGaamitaaqaaiaa icdaaaGccqGHKjYOcaWGWbWaaSbaaSqaaiaadEeaaeqaaOGaey4kaS YaaSaaaeaacaaI0aGaeq4Wdm3aaSbaaSqaaiaadYeacaWGhbaabeaa aOqaaiaadseadaWgaaWcbaGaaGimaaqabaaaaaaa@489B@  (3.3)

Зная диапазон изменения параметра p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@ , можно методом пристрелки решить рассматриваемую задачу об определении осесимметричной формы равновесной весомой капли, покоящейся на горизонтальной плоскости. При этом критический угол смачивания θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiabgEHiQaqabaaaaa@3A68@  вычисляется при активном использовании соотношения (2.20) (или, что то же самое, равенства (2.21) при учете выражения (2.9)), которое получено как следствие составления баланса всех сил, действующих на каплю в вертикальном направлении, а отнюдь не в горизонтальном направлении, как это принято делать в рамках классической модели Юнга [2] (см. выражение (1.1)). Кроме того, в рамках построенной модели для определения угла θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiabgEHiQaqabaaaaa@3A68@  требуется знать только коэффициент поверхностного натяжения жидкости на границе с газом σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaaaaa@3B23@ , т.е. в отличие от модели Юнга, аналогичные коэффициенты на границах контакта твердое тело MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  жидкость ( σ SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGmbaabeaaaaa@3B2F@  ) и твердое тело MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  газ ( σ SG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadofacaWGhbaabeaaaaa@3B2A@  ), которые, как уже отмечалось выше, нужно еще предварительно определить из каких-то независимых экспериментов, вообще не используются. Это обстоятельство является несомненным преимуществом рассматриваемой модели.

Рассмотрим численный алгоритм решения исследуемой задачи. При фиксированном значении p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@ , выбранном из диапазона (3.3), нелинейную задачу Коши (2.1) и (2.4) при учете соотношений (2.5) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (2.7) целесообразно интегрировать численно с применением, например, методов Рунге MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  Кутты [3, 20]. При этом шаг интегрирования Δs MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiLdqKaam4Caa aa@39F5@  выбирается произвольно, но достаточно малым. Чтобы получить практически приемлемый шаг интегрирования Δs MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiLdqKaam4Caa aa@39F5@ , величину s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacqGHxiIkaeqaaaaa@39AA@  в начальном (нулевом) приближении можно принять равной длине дуги полуокружности меридионального сечения эталонной капли диаметра D 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIWaaabeaaaaa@3946@ :

s 0 =π D 0 /2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaDaaale aacqGHxiIkaeaacaaIWaaaaOGaeyypa0JaeqiWdaNaamiramaaBaaa leaacaaIWaaabeaakiaac+cacaaIYaaaaa@405A@ , (3.4)

тогда шаг интегрирования в нулевом приближении Δ s 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiLdqKaam4Cam aaCaaaleqabaGaaGimaaaaaaa@3ADC@  можно задать так:

Δ s 0 = s 0 /N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiLdqKaam4Cam aaCaaaleqabaGaaGimaaaakiabg2da9iaadohadaqhaaWcbaGaey4f IOcabaGaaGimaaaakiaac+cacaWGobaaaa@404A@ , (3.5)

где N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  количество отрезков, на которые в начальном (оценочном) приближении разбивается дуга длиной s = s 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CamaaBaaale aacqGHxiIkaeqaaOGaeyypa0Jaam4CamaaDaaaleaacqGHxiIkaeaa caaIWaaaaaaa@3D88@ .

Очевидно, что для выполнения равенства (2.12) на последнем шаге интегрирования с номером N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOtamaaBaaale aacqGHxiIkaeqaaaaa@3985@  необходим специальный подбор величины шага Δs MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiLdqKaam4Caa aa@39F5@ , который в общем случае будет отличен от значения Δ s 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiLdqKaam4Cam aaCaaaleqabaGaaGimaaaaaaa@3ADC@ , заданного соотношением (3.5) при учете выражения (3.4). Добиться этого результата при численной реализации можно за счет дробления шага интегрирования Δs MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiLdqKaam4Caa aa@39F5@  (например, за счет его уменьшения вдвое).

Так как в общем случае шаг интегрирования Δs MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiLdqKaam4Caa aa@39F5@  является переменным, то интегральное соотношение (2.12) при учете (2.1) целесообразно заменить на эквивалентное дифференциальное уравнение

dV s ds =π r 2 s cosϑ s ;s0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb GaamOvamaabmaabaGaam4CaaGaayjkaiaawMcaaaqaaiaadsgacaWG Zbaaaiabg2da9iabec8aWjaadkhadaahaaWcbeqaaiaaikdaaaGcda qadaqaaiaadohaaiaawIcacaGLPaaaciGGJbGaai4BaiaacohacqaH rpGsdaqadaqaaiaadohaaiaawIcacaGLPaaacaGG7aGaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWGZbGaeyyzImRaaGimaaaa@57E5@  (3.6)

и дополнительные краевые условия

V 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaabmaaba GaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@3C75@  (3.7)

V s = V 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaabmaaba Gaam4CamaaBaaaleaacqGHxiIkaeqaaaGccaGLOaGaayzkaaGaeyyp a0JaamOvamaaBaaaleaacaaIWaaabeaaaaa@3EDF@  (3.8)

В этом случае при заданном из диапазона (3.3) значении p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@  численно интегрируется задача Коши (2.1), (2.4) и (3.6) при учете соотношений (2.5) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (2.7) и (3.7) до тех пор, пока не будет выполнено равенство (3.8). Далее вновь используется пристрелка по параметру p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@  (см. выше).

Для численного интегрирования уравнений (2.1), (2.4) и (3.6) при начальных условиях (2.7), (3.7) и учете равенств (2.5) и (2.6) использовался неклассический (неявный) метод Рунге MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Кутты, а именно трехстадийный диагональный метод Барриджа (Burrage), имеющий матрицу Бутчера (Butcher) следующего вида [20]:

γ γ 0 0 0.5 0.5γ γ 0 1γ 2γ 14γ γ β/2 1β β/2 ;β 1 12 0.5γ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaqWaaeaafaqabe abeaaaaaqaaiabeo7aNbqaaiabeo7aNbqaaiaaicdaaeaacaaIWaaa baGaaGimaiaac6cacaaI1aaabaGaaGimaiaac6cacaaI1aGaeyOeI0 Iaeq4SdCgabaGaeq4SdCgabaGaaGimaaqaaiaaigdacqGHsislcqaH ZoWzaeaacaaIYaGaeq4SdCgabaGaaGymaiabgkHiTiaaisdacqaHZo WzaeaacqaHZoWzaeaaaeaacqaHYoGycaGGVaGaaGOmaaqaaiaaigda cqGHsislcqaHYoGyaeaacqaHYoGycaGGVaGaaGOmaaaaaiaawEa7ca GLiWoacaGG7aGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeqOSdiMaeyyyIO 7aaSaaaeaacaaIXaaabaGaaGymaiaaikdadaqadaqaaiaaicdacaGG UaGaaGynaiabgkHiTiabeo7aNbGaayjkaiaawMcaamaaCaaaleqaba GaaGOmaaaaaaaaaa@7DD5@  (3.9)

Элементы матрицы (3.9) зависят от числового параметра γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4SdCgaaa@393E@ , при произвольном задании которого метод Барриджа имеет 3-й порядок точности [20]. Если же γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4SdCgaaa@393E@  является одним из корней уравнения

24 γ 3 36 γ 2 +12γ1=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGOmaiaaisdacq aHZoWzdaahaaWcbeqaaiaaiodaaaGccqGHsislcaaIZaGaaGOnaiab eo7aNnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdacaaIYaGaeq 4SdCMaeyOeI0IaaGymaiabg2da9iaaicdaaaa@4818@ , (3.10)

то метод имеет 4-й порядок точности. По соображениям устойчивости в [20] рекомендуется выбирать следующий корень уравнения (3.10):

γ= 1 2 + 3 3 cos π 18 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4SdCMaeyypa0 ZaaSaaaeaacaaIXaaabaGaaGOmaaaacqGHRaWkdaWcaaqaamaakaaa baGaaG4maaWcbeaaaOqaaiaaiodaaaGaci4yaiaac+gacaGGZbWaaS aaaeaacqaHapaCaeaacaaIXaGaaGioaaaaaaa@4479@

Однако предварительно проведенные численные эксперименты показали, что в рассматриваемой задаче непротиворечивые и устойчивые результаты дает другой корень уравнения (3.10), а именно:

γ= 1 2 3 6 cos π 18 + 1 2 sin π 18 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4SdCMaeyypa0 ZaaSaaaeaacaaIXaaabaGaaGOmaaaacqGHsisldaWcaaqaamaakaaa baGaaG4maaWcbeaaaOqaaiaaiAdaaaGaci4yaiaac+gacaGGZbWaaS aaaeaacqaHapaCaeaacaaIXaGaaGioaaaacqGHRaWkdaWcaaqaaiaa igdaaeaacaaIYaaaaiGacohacaGGPbGaaiOBamaalaaabaGaeqiWda habaGaaGymaiaaiIdaaaaaaa@4D12@  (3.11)

Расчеты проводились с двойной машинной точностью (до 15-ти значащих цифр). Шаг интегрирования Δ s 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiLdqKaam4Cam aaCaaaleqabaGaaGimaaaaaaa@3ADC@  определялся по формуле (3.5) при учете равенства (3.4), причем для капли с эталонным диаметром D0=1мм значение N принималось равным 15. Для капель других эталонных диаметров N изменялось пропорционально изменению их диаметров относительно значения D0=1мм, т.е. во всех расчетах использовалось примерно одно и то же значение Δ s 0 =1.05 10 4 ì MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiLdqKaam4Cam aaCaaaleqabaGaaGimaaaakiabg2da9iaaigdacaGGUaGaaGimaiaa iwdacqGHflY1caaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGinaa aakiaaykW7caaMc8Eef4uz3r3BUneaiuaacaWFSdaaaa@4BD7@ . Поэтому на каждом шаге интегрирования при использовании выражения (3.11) расчет проводился с точностью порядка 10 16 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGymaiaaicdada ahaaWcbeqaaiabgkHiTiaaigdacaaI2aaaaaaa@3BA1@ , сопоставимой с используемой машинной точностью расчета (по крайней мере, при вычислении функции ϑ s MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqy0dO0aaeWaae aacaWGZbaacaGLOaGaayzkaaaaaa@3BC0@  ).

При численном расчете краевое условие (3.8) заменялось системой неравенств

V s V 0 ;s>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaabmaaba Gaam4CaaGaayjkaiaawMcaaiabgsMiJkaadAfadaWgaaWcbaGaaGim aaqabaGccaGG7aGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 Uaam4Caiabg6da+iaaicdaaaa@4B2E@  (3.12)

Δ V V 0 ε= 10 15 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacqqHuo arcaWGwbWaaSbaaSqaaiabgEHiQaqabaaakeaacaWGwbWaaSbaaSqa aiaaicdaaeqaaaaakiabgsMiJkabew7aLjabg2da9iaaigdacaaIWa WaaWbaaSqabeaacqGHsislcaaIXaGaaGynaaaaaaa@4543@ , (3.13)

где Δ V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiLdqKaamOvam aaBaaaleaacqGHxiIkaeqaaaaa@3AF3@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  приращение объема капли на последнем шаге интегрирования уравнения (3.6) при нарушении неравенства (3.12). Если в процессе расчета нарушались оба неравенства (3.12) и (3.13), то шаг интегрирования Δs MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiLdqKaam4Caa aa@39F5@  уменьшался вдвое и расчет повторялся, начиная с предыдущего шага. Интегрирование системы (2.1), (2.4) и (3.6) при фиксированном значении параметра p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@  прекращалось либо при выполнении строго равенства в условии (3.12), либо при нарушении неравенства (3.12), но выполнении ограничения (3.13).

Для решения систем трансцендентных уравнений, возникающих на каждой стадии при реализации метода Барриджа, использовался метод установления с параметром итерационного процесса τ=0.5 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiXdqNaeyypa0 JaaGimaiaac6cacaaI1aaaaa@3C8D@ . Системы этих уравнений решались с точностью до 15-ти значащих цифр, что соответствует двойной машинной точности расчета.

Замечание 1. Необходимость использования такой высокой точности расчетов (см., например, значение величины ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyTdugaaa@393E@  в неравенстве (3.13)) обусловлена тем, что невязка P ¯ p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiuayaaraWaae WaaeaacaWGWbWaa0baaSqaaiaadYeaaeaacaaIWaaaaaGccaGLOaGa ayzkaaaaaa@3CC4@  в уравнении силового баланса (2.20) при изменении параметра p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@  в диапазоне (3.3) имеет порядок 10 12 ...10 4 Í MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGymaiaaicdada ahaaWcbeqaaiabgkHiTiaaigdacaaIYaaaaOGaaiOlaiaac6cacaGG UaGaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaisdaaaGccaaMc8 UaaGPaVhrbov2D09MBdbacfaGaa8xZaaaa@4859@ . Проведение же расчетов с более грубой точностью приводит к тому, что зависимость P ¯ p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiuayaaraWaae WaaeaacaWGWbWaa0baaSqaaiaadYeaaeaacaaIWaaaaaGccaGLOaGa ayzkaaaaaa@3CC4@  перестает быть гладкой (возникают достаточно сильные «биения»), что не позволяет надежно определять корни уравнения (2.20) или, что то же самое, (2.21) (подробнее см. ниже).

Из физических соображений следует, что угол ϑ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqy0dOeaaa@393F@  (см. рис. 3) может изменяться только в пределах

π/2ϑ s π/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyOeI0IaeqiWda Naai4laiaaikdacqGHKjYOcqaHrpGsdaqadaqaaiaadohaaiaawIca caGLPaaacqGHKjYOcqaHapaCcaGGVaGaaGOmaaaa@466F@  (3.14)

Угол же θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdehaaa@394D@  связан с ϑ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqy0dOeaaa@393F@  соотношением (2.9) (см. рис. 3), поэтому для критического угла смачивания получаем выражение θ =π/2 ϑ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiabgEHiQaqabaGccqGH9aqpcqaHapaCcaGGVaGaaGOmaiabgkHi Tiabeg9aknaaBaaaleaacqGHxiIkaeqaaaaa@4254@  (см. рис. 1 в окрестности точки B и рис. 2,б), которое уже использовалось при переходе от равенства (2.20) к уравнению (2.21), причем значение ϑ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqy0dO0aaSbaaS qaaiabgEHiQaqabaaaaa@3A5A@  определено третьим соотношением (2.8). Далее для упрощения изложения критический угол смачивания будем обозначать традиционно [2, 3] как θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdehaaa@394D@  (см. рис. 1 в окрестности точки A и равенства (1.1) и (1.3)) и называть просто углом смачивания.

4. Обсуждение результатов расчетов. В настоящем разделе обсуждаются равновесные формы водяных капель ( ρ=103кг/м3, σLG=72.86103Н/м ) и капель этилового спирта ( ρ=789кг3, σLG=22.8103Н/м ), покоящихся на горизонтальной плоскости.

Анализ соотношений, представленных в разд. 2, показывает: если коэффициент поверхностного натяжения σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaaaaa@3B23@  не зависит от давления газа p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaaaaa@3984@  (что далее и принимается), то варьирование значения p G =const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaakiabg2da9iaabogacaqGVbGaaeOBaiaabohacaqG 0baaaa@3F4A@  никак не влияет на форму равновесной капли и на угол смачивания θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdehaaa@394D@ . Действительно, величина p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaaaaa@3984@  входит в правую часть дифференциального уравнения (2.4) (или (2.6)) и в уравнение баланса сил (2.20) (или (2.21)) только в виде разности p ¯ L 0 = p L 0 p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaOGaeyypa0JaamiCamaaDaaaleaa caWGmbaabaGaaGimaaaakiabgkHiTiaadchadaWgaaWcbaGaam4raa qabaaaaa@40FD@  (см. выражения (2.5)), т.е. решение рассматриваемой задачи зависит не от величины давления газа p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaaaaa@3984@ , а от величины избыточного давления в вершине капли p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaaaa@3A5C@ . Поэтому изменение значения p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaaaaa@3984@  приводит к равновеликому изменению давления жидкости в полюсной точке капли p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@  без изменения величины p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaaaa@3A5C@  и, как следствие, без изменения формы капли и угла смачивания θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdehaaa@394D@ . В силу этого обстоятельства в качестве параметра пристрелки (см. разд. 3) целесообразно использовать не величину p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaDaaale aacaWGmbaabaGaaGimaaaaaaa@3A44@ , а значение избыточного давления p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaaaa@3A5C@ , которое, согласно неравенствам (3.3), может изменяться в диапазоне

0 p ¯ L 0 4 σ LG / D 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGimaiabgsMiJk qadchagaqeamaaDaaaleaacaWGmbaabaGaaGimaaaakiabgsMiJkaa isdacqaHdpWCdaWgaaWcbaGaamitaiaadEeaaeqaaOGaai4laiaads eadaWgaaWcbaGaaGimaaqabaaaaa@4540@  (4.1)

Замечание 2. Сразу же отметим, что среди возможных решений рассматриваемой задачи всегда существует одно решение, которое будем называть тривиальным: из анализа системы уравнений (2.1) и (2.4) вытекает, что ее решением является такое, при котором капля бесконечно тонким слоем (толщиной dz) растекается по всей опорной плоскости (при этом r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacqGHxiIkaeqaaOGaeyOKH4QaeyOhIukaaa@3D11@ ; см. рис. 1 и 5). Если уравнение силового баланса (2.20) (или (2.21)) поделить на r 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaDaaale aacqGHxiIkaeaacaaIYaaaaaaa@3A66@  и затем осуществить предельный переход r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacqGHxiIkaeqaaOGaeyOKH4QaeyOhIukaaa@3D11@ , то получим p ¯ L 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaOGaeyypa0JaaGimaaaa@3C26@  (т.е. p L p L 0 = p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGmbaabeaakiabggMi6kaadchadaqhaaWcbaGaamitaaqaaiaa icdaaaGccqGH9aqpcaWGWbWaaSbaaSqaaiaadEeaaeqaaaaa@4106@  ), что полностью согласуется с уравнением Лапласа (1.2), так как в этом случае 1/ R 1 =1/ R 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGymaiaac+caca WGsbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGymaiaac+cacaWG sbWaaSbaaSqaaiaaikdaaeqaaOGaeyyyIORaaGimaaaa@418D@ . Очевидно, что такое решение в практическом плане малоинтересно, поэтому далее оно не обсуждается.

4.1. Капли малых эталонных диаметров. На рис. 6 изображены зависимости невязки P ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiuayaaraaaaa@3884@  в уравнении силового баланса (2.20) от величины избыточного давления в вершине водяной капли p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaaaa@3A5C@ , изменяющейся в диапазоне значений (4.1). Номера кривых на рис. 6 соответствуют следующим значениям диаметров D 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIWaaabeaaaaa@3946@  эталонных капель: кривая 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   D 0 =1ìì MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIWaaabeaakiabg2da9iaaigdacaaMc8UaaGPaVhrbov2D09MB dbacfaGaa8h7aiaa=Xoaaaa@43E2@ , кривая 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   D 0 =2ìì MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIWaaabeaakiabg2da9iaaikdacaaMc8UaaGPaVhrbov2D09MB dbacfaGaa8h7aiaa=Xoaaaa@43E3@ , кривая 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   D 0 =3ìì MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIWaaabeaakiabg2da9iaaiodacaaMc8UaaGPaVhrbov2D09MB dbacfaGaa8h7aiaa=Xoaaaa@43E4@  и кривая 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   D 0 =3.894ìì MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIWaaabeaakiabg2da9iaaiodacaGGUaGaaGioaiaaiMdacaaI 0aGaaGPaVlaaykW7ruGtLDhDV52qaGqbaiaa=XoacaWFSdaaaa@46D9@ . Полностью наглядно изобразить зависимости P ¯ p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiuayaaraWaae WaaeaaceWGWbGbaebadaqhaaWcbaGaamitaaqaaiaaicdaaaaakiaa wIcacaGLPaaaaaa@3CDC@  не представляется возможным, так как ординаты некоторых точек на представленных кривых имеют значения на 4…6 порядков большие, чем ординаты точек на фрагментах этих кривых, изображенных на рис. 6. Стрелки указывают на поведение зависимостей P ¯ p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiuayaaraWaae WaaeaaceWGWbGbaebadaqhaaWcbaGaamitaaqaaiaaicdaaaaakiaa wIcacaGLPaaaaaa@3CDC@  на соответствующих их возрастающих или убывающих ветвях.

 

Рис. 6. Зависимость невязки в уравнении силового баланса (2.20) от величины избыточного давления в вершине водяной капли: а) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugababaaaaaaaaapeGaa83eGaaa@3A15@  для капель с эталонным диаметром 1 и 2 мм; б) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuqajugababaaaaaaaaapeGaa83eGaaa@3A15@  для капель с эталонным диаметром 3 и 3.894 мм

 

Все кривые на рис. 6 проходят через начало координат, что соответствует тривиальному решению, поэтому, согласно замечанию 2, далее соответствующие корни уравнения (2.20) не рассматриваются. Остальные нули зависимостей P ¯ p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiuayaaraWaae WaaeaaceWGWbGbaebadaqhaaWcbaGaamitaaqaaiaaicdaaaaakiaa wIcacaGLPaaaaaa@3CDC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  точки на кривых с нулевыми ординатами MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  на рис. 6 с увеличением их абсцисс последовательно обозначены буквами A i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqamaaBaaale aacaWGPbaabeaaaaa@3977@ , B i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOqamaaBaaale aacaWGPbaabeaaaaa@3978@ , C i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4qamaaBaaale aacaWGPbaabeaaaaa@3979@  и т.д., где индекс i соответствует номеру i-й кривой, которой принадлежит данная точка. Чтобы не загромождать рис. 6,а точки C i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4qamaaBaaale aacaWGPbaabeaaaaa@3979@ , D i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaWGPbaabeaaaaa@397A@  ( i=1,2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyAaiabg2da9i aaigdacaGGSaGaaGOmaaaa@3BB2@  ) и т.д. на нем не изображены, так как они лежат слишком близко к точкам B 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOqamaaBaaale aacaaIXaaabeaaaaa@3945@  и B 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOqamaaBaaale aacaaIYaaabeaaaaa@3946@  на кривых 1 и 2 и далее не потребуются.

Расчеты показали, что точки A i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqamaaBaaale aacaWGPbaabeaaaaa@3977@  и B i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOqamaaBaaale aacaWGPbaabeaaaaa@3978@  на i-х кривых на рис. 6 определяют два нетривиальных решения рассматриваемой задачи, удовлетворяющих физическим ограничениям (3.14). Точкам же C i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4qamaaBaaale aacaWGPbaabeaaaaa@3979@ , D i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaWGPbaabeaaaaa@397A@  ( i= 1,4 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyAaiabg2da9m aanaaabaGaaGymaiaacYcacaaI0aaaaaaa@3BC5@  ) и т.д. соответствуют нефизичные решения, в которых ϑ s <π/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqy0dO0aaeWaae aacaWGZbWaaSbaaSqaaiabgEHiQaqabaaakiaawIcacaGLPaaacqGH 8aapcqGHsislcqaHapaCcaGGVaGaaGOmaaaa@4202@  ( θ>π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyOpa4 JaeqiWdahaaa@3C12@  ), т.е. нарушается левое неравенство в (3.14), поэтому далее такие решения не анализируются. (Качественно аналогичные результаты получаются и для зависимостей P ¯ p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiuayaaraWaae WaaeaaceWGWbGbaebadaqhaaWcbaGaamitaaqaaiaaicdaaaaakiaa wIcacaGLPaaaaaa@3CDC@ , рассчитанных для капель этилового спирта разных эталонных диаметров.)

На левых участках кривых на рис. 6 наблюдаются небольшие «биения», о которых говорилось в замечании 1 и которые пока не удалось полностью устранить.

Итак, точки A i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqamaaBaaale aacaWGPbaabeaaaaa@3977@  и B i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOqamaaBaaale aacaWGPbaabeaaaaa@3978@  на i-х кривых на рис. 6 определяют два корня уравнения (2.20), которым соответствуют два нетривиальных решения рассматриваемой задачи, удовлетворяющих физическим ограничениям (3.14). При этом в первом решении, соответствующем точкам A i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqamaaBaaale aacaWGPbaabeaaaaa@3977@  на рис. 6, углы смачивания имеют значения θ< 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyipaW JaaGyoaiaaicdadaahaaWcbeqaaiablIHiVbaaaaa@3D35@  (напомним, что такой тип решения характеризует опорную плоскость как гидрофильную), а во втором решении, соответствующем точкам B i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOqamaaBaaale aacaWGPbaabeaaaaa@3978@  ( i= 1,3 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyAaiabg2da9m aanaaabaGaaGymaiaacYcacaaIZaaaaaaa@3BC4@  ) на рис. 6, углы смачивания θ> 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyOpa4 JaaGyoaiaaicdadaahaaWcbeqaaiablIHiVbaaaaa@3D39@  (т.е. этот тип решения характеризует опорную плоскость как гидрофобную).

Из анализа взаимного расположения точек A i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqamaaBaaale aacaWGPbaabeaaaaa@3977@  и B i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOqamaaBaaale aacaWGPbaabeaaaaa@3978@  на рис. 6 видно, что с увеличением номера i-й кривой (с увеличением диаметра эталонной капли D 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIWaaabeaaaaa@3946@  ) эти точки сближаются и при D0=3.894 мм для водяной капли они совпадают (поэтому на рис. 6,б указано: A 4 = B 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqamaaBaaale aacaaI0aaabeaakiabg2da9iaadkeadaWgaaWcbaGaaGinaaqabaaa aa@3C08@  ) и задача в этом случае имеет только одно нетривиальное решение. При D0>3.894мм зависимость P ¯ p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiuayaaraWaae WaaeaaceWGWbGbaebadaqhaaWcbaGaamitaaqaaiaaicdaaaaakiaa wIcacaGLPaaaaaa@3CDC@  не имеет нулей, соответствующих физичным решениям рассматриваемой задачи (за исключением тривиального решения), удовлетворяющих ограничениям (3.14). В этих случаях при D04мм (но D0>3.894мм ) зависимость P ¯ p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiuayaaraWaae WaaeaaceWGWbGbaebadaqhaaWcbaGaamitaaqaaiaaicdaaaaakiaa wIcacaGLPaaaaaa@3CDC@  качественно аналогична кривой 4 на рис. 6,б, однако в окрестности точки A 4 = B 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqamaaBaaale aacaaI0aaabeaakiabg2da9iaadkeadaWgaaWcbaGaaGinaaqabaaa aa@3C08@  она лежит выше оси абсцисс, т.е. не пересекает ее. (Качественно аналогичные особенности поведения зависимостей P ¯ p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiuayaaraWaae WaaeaaceWGWbGbaebadaqhaaWcbaGaamitaaqaaiaaicdaaaaakiaa wIcacaGLPaaaaaa@3CDC@  наблюдаются и для капель этилового спирта.)

На рис. 7 изображены расчетные равновесные формы водяных капель разных эталонных диаметров, соответствующие разным типам решения: первому (рис. 7,а) и второму (рис. 7,б). (Не следует путать координату z на рис. 7 и последующих рисунках с координатой z на рис. 1, 3, 4 и 5,а.) Кривые на рис. 7 рассчитаны при тех же условиях (тех же эталонных диаметрах D 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIWaaabeaaaaa@3946@  ), что и кривые с соответствующими номерами на рис. 6. На рис. 7,а кривой 1 соответствует значение угла смачивания θ= 24 3 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGOmaiaaisdadaahaaWcbeqaaiablIHiVbaakiaaiodaceaI0aGb auaaaaa@3EC5@ , кривой 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   θ= 41 8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGinaiaaigdadaahaaWcbeqaaiablIHiVbaakiqaiIdagaqbaaaa @3E0B@ , кривой 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   θ= 57 1 7 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGynaiaaiEdadaahaaWcbeqaaiablIHiVbaakiaaigdaceaI3aGb auaaaaa@3ECC@  и кривой 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   θ= 89 1 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGioaiaaiMdadaahaaWcbeqaaiablIHiVbaakiaaigdaceaI0aGb auaaaaa@3ECE@ , а на рис. 7,б кривой 1 соответствует значение θ= 153 5 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGymaiaaiwdacaaIZaWaaWbaaSqabeaacqWIyiYBaaGccaaI1aGa bGOnayaafaaaaa@3F86@ , кривой 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   θ= 137 5 9 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGymaiaaiodacaaI3aWaaWbaaSqabeaacqWIyiYBaaGccaaI1aGa bGyoayaafaaaaa@3F8B@ , кривой 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   θ= 116 4 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGymaiaaigdacaaI2aWaaWbaaSqabeaacqWIyiYBaaGccaaI0aGa bGOnayaafaaaaa@3F84@  и кривой 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   θ= 89 1 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGioaiaaiMdadaahaaWcbeqaaiablIHiVbaakiaaigdaceaI0aGb auaaaaa@3ECE@ .

 

Рис. 7. Расчетные меридиональные сечения водяных капель разных эталонных диаметров: a) первый тип решения; б) второй тип решения

 

Поведение кривых на рис. 7,а показывает, что с увеличением диаметра эталонной капли в первом типе решения угол смачивания θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdehaaa@394D@  также увеличивается, но остается меньшим 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGyoaiaaicdada ahaaWcbeqaaiablIHiVbaaaaa@3A7B@  (гидрофильность). Поведение же кривых на рис. 7,б, наоборот, указывает на то, что с увеличением диаметра эталонной капли во втором типе решения угол смачивания θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdehaaa@394D@  уменьшается, оставаясь, как правило, большим 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGyoaiaaicdada ahaaWcbeqaaiablIHiVbaaaaa@3A7B@  (гидрофобность). Как показали расчеты, для водяной капли, покоящейся на горизонтальной плоскости, предельным является эталонный диаметр D0=3.894мм, при котором оба решения совпадают (см. точку A 4 = B 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqamaaBaaale aacaaI0aaabeaakiabg2da9iaadkeadaWgaaWcbaGaaGinaaqabaaa aa@3C08@  на рис. 6,б), а угол смачивания в этом предельном случае имеет значение θ= 89 1 4 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGioaiaaiMdadaahaaWcbeqaaiablIHiVbaakiaaigdaceaI0aGb auaacqGHijYUcaaI5aGaaGimamaaCaaaleqabaGaeSigI8gaaaaa@4363@  (см. кривые 4 на рис. 7), соответствующее условной границе раздела гидрофильных и гидрофобных свойств опорной поверхности. Такие предельные максимально допустимые диаметры эталонных капель D 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIWaaabeaaaaa@3946@  далее будем называть критическими.

Если эталонный диаметр больше критического (т.е. для водяных капель D0>3.894 мм ), то согласно полученным результатам, нетривиальная осесимметричная форма равновесной капли не может быть реализована: такая капля должна либо растекаться по всей опорной плоскости бесконечно тонким слоем (см. замечание 2), либо распадаться на несколько меньших капель, имеющих нетривиальные равновесные формы, аналогичные изображенным на рис. 7. (Моделирование этого случая выходит за рамки настоящего исследования.)

Отметим, что в работе [12] были получены качественно схожие результаты: для капли диэлектрика при превышении некоторого максимально допустимого (критического) значения электростатической силы ее равновесная форма также не может существовать, поэтому она должна распадаться на несколько капель меньших размеров.

На рис. 8 изображены расчетные кривые, характеризующие нетривиальные равновесные формы капель этилового спирта. Обозначение кривых 1 и 2 на рис. 8 такое же, как и на рис. 7. Кривые 3 на рис. 8 соответствуют почти предельному случаю для капли этилового спирта, когда первый и второй типы решения рассматриваемой задачи практически совпадают (в этом случае критический диаметр D02.46 мм ). На рис. 8,а кривой 1 ( D0=1 мм ) соответствует значение угла смачивания θ= 34 5 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaG4maiaaisdadaahaaWcbeqaaiablIHiVbaakiaaiwdaceaIWaGb auaaaaa@3EC4@ , кривой 2 ( D0=2 мм ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   θ= 60 2 8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGOnaiaaicdadaahaaWcbeqaaiablIHiVbaakiaaikdaceaI4aGb auaaaaa@3EC8@  и кривой 3 ( D0=2.46 мм ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   θ= 84 3 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGioaiaaisdadaahaaWcbeqaaiablIHiVbaakiaaiodaceaIWaGb auaaaaa@3EC7@ , а на рис. 8,б кривой 1 соответствует значение θ= 141 3 8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGymaiaaisdacaaIXaWaaWbaaSqabeaacqWIyiYBaaGccaaIZaGa bGioayaafaaaaa@3F83@ , кривой 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   θ= 115 3 8 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGymaiaaigdacaaI1aWaaWbaaSqabeaacqWIyiYBaaGccaaIZaGa bGioayaafaaaaa@3F84@  и кривой 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@   θ= 85 4 7 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGioaiaaiwdadaahaaWcbeqaaiablIHiVbaakiaaisdaceaI3aGb auaaaaa@3ED0@ .

 

Рис. 8. Расчетные меридиональные сечения капель этилового спирта разных эталонных диаметров: a) первый тип решения; б) второй тип решения

 

Сравнение кривых 1 и 2 на рис. 7,а и 8,а соответственно показывает, что в случае первого типа решения рассматриваемой задачи для капель одних и тех же эталонных диаметров угол смачивания капель этилового спирта больше, чем водяных капель; и, наоборот, в случае второго типа решения (см. кривые 1 и 2 на рис. 7,б и 8,б соответственно). Из рис. 8 видно, что для капель этилового спирта, покоящихся на горизонтальной плоскости, также существует критическое значение эталонного диаметра D02.46 мм, которое существенно меньше, чем для водяных капель ( D0=3.894 мм ). Однако угол смачивания у капель этилового спирта в критическом случае примерно тот же, что и у водяных капель, т.е. близок к 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGyoaiaaicdada ahaaWcbeqaaiablIHiVbaaaaa@3A7B@ .

Таким образом, капли разных жидкостей, покоящиеся на горизонтальной плоскости, при одинаковых малых эталонных диаметрах имеют разные углы смачивания, что и наблюдается в натурных экспериментах. При этом возможна реализация двух равновесных форм жидкой капли: при реализации первого типа форм углы смачивания являются малыми (меньше 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGyoaiaaicdada ahaaWcbeqaaiablIHiVbaaaaa@3A7B@  ), а при реализации второго типа форм MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  большими (как правило, больше 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGyoaiaaicdada ahaaWcbeqaaiablIHiVbaaaaa@3A7B@  ). Существуют критические значения эталонных диаметров капель, при которых могут существовать их нетривиальные равновесные формы на горизонтальной плоскости. Для жидкостей разных химических составов критические значения эталонных диаметров разные, но углы смачивания в этих предельных случаях примерно одинаковы и близки по значению к 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGyoaiaaicdada ahaaWcbeqaaiablIHiVbaaaaa@3A7B@ . Если диаметр эталонной капли больше критического диаметра для соответствующей жидкости, то существует только тривиальная форма равновесной капли, когда капля растекается по всей опорной плоскости бесконечно тонким слоем (см. замечание 2). Так, например, для водяной капли расчетное критическое значение эталонного диаметра D0=3.894 мм (см. кривые 4 на рис. 7). Однако следует подчеркнуть, что эти расчетные результаты справедливы только для идеально гладкой горизонтальной опорной поверхности, не обладающей поверхностно активными свойствами и не имеющей шероховатости [2]. В натурных же экспериментах на реальных шероховатых поверхностях или на подложках, обладающих поверхностно активными свойствами, удается получить равновесные формы водяных капель больших эталонных диаметров (порядка 10…20 мм), имеющих при этом достаточно большие углы смачивания (более 100 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGymaiaaicdaca aIWaWaaWbaaSqabeaacqWIyiYBaaaaaa@3B2D@  ) [4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 6].

В действительности реализация той или иной равновесной формы капли (докритического размера) на горизонтальной поверхности определяется, по-видимому, конкретными условиями ее перехода из динамического состояния в стационарное. С целью проверки этого предположения были проведены натурные эксперименты: водяные капли эталонного диаметра D03.5 мм сбрасывались с разной высоты на подложку из поликарбоната. Результаты этих экспериментов представлены на рис. 9. Левая капля на рис. 9 была сброшена с высоты примерно 80 мм (ее равновесная форма соответствует первому типу решения рассматриваемой задачи), а правая капля MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  с высоты примерно 5 мм (ее форма соответствует второму типу решения). Таким образом, существенное различие форм капель, представленных на рис. 9, позволяет утверждать, что натурные эксперименты подтвердили возможность существования двух равновесных форм капли, покоящейся на горизонтальной плоскости. (Качественно аналогичные результаты были получены и при сбрасывании водяных капель на стеклянную подложку.)

 

Рис. 9. Две равновесные формы водяных капель одного и того же эталонного диаметра D03.5мм, покоящихся на подложке из поликарбоната

 

Традиционно в натурных экспериментах каплю на подложку выдавливают из шприца, уперев кончик его иглы в опорную поверхность [1, 3]. При таком способе «посадки» капли на поверхность подложки ее форма, очевидно, должна соответствовать второму типу решения рассматриваемой задачи. Возможно, именно указанная специфика формирования капли на горизонтальной поверхности, не позволила ранее исследователям обнаружить в экспериментах возможность существования двух равновесных форм капли докритического размера.

4.2. Капли больших эталонных диаметров. Выше обсуждались результаты расчетов, полученные для случаев, когда на каплю жидкости действуют только ее собственный вес G 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4ramaaBaaale aacaaIWaaabeaaaaa@3949@ , давление газа p G MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGhbaabeaaaaa@3984@  и реакция опоры p SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A61@  с равнодействующей P SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiuamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A41@  (см. рис. 5,а). Никакое дополнительное взаимодействие между опорной плоскостью и жидкостью капли не учитывалось, поэтому приведенные в разд. 4.1 численные решения не чувствительны к химическому составу материала подложки. Однако, согласно краткому обзору, проведенному в разд. 1, из натурных экспериментов известно, что материал подложки может обладать поверхностно активными свойствами, способными оказывать существенное влияние на равновесную форму капли и угол смачивания [2]. Это влияние может быть вызвано дополнительным взаимодействием между жидкостью и опорной плоскостью MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  силами слабого взаимодействия, например ионного взаимодействия, т.е. силами электрохимического происхождения, или силами типа сил Ван-дер-Ваальса.

Следует подчеркнуть, что в работе [12] также рассматривалось дополнительное взаимодействие за счет силы, порожденной электростатическим полем, наведенным между двумя плоскими электродами. При этом один из электродов служил в качестве подожки для капли диэлектрика, а второй электрод размещался над каплей, параллельно первому. Как и сила всемирного тяготения, рассматриваемая в [12] дополнительная электростатическая сила относится к разряду сил дальнодействия. В настоящем же подразделе речь идет о дополнительном взаимодействии жидкости капли с опорной поверхностью, характеризующемся силами близкодействия, т.е. подложка оказывает дополнительное влияние только на ближайшие точки капли, расположенные на границе контакта жидкость MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ твердое тело.

В рамках рассматриваемой математической модели указанное дополнительное взаимодействие можно охарактеризовать равномерно распределенной активной силой p V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaaaaa@3993@ , направленной вдоль вертикальной оси Oz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taiaadQhaaa a@396A@ , изображенной на рис. 1, 4 и 5,а. При этом на данных рисунках силу p SL MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaaaaa@3A61@  следует заменить на p SL p V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGtbGaamitaaqabaGccqGHsislcaWGWbWaaSbaaSqaaiaadAfa aeqaaaaa@3D54@ , тогда уравнение силового баланса (2.20) при учете выражения (2.9) примет вид (ср. с равенством (2.21))

π r 2 p ¯ f 0 p V +gρ z 2π σ LG r cos ϑ G 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiWdaNaamOCam aaDaaaleaacqGHxiIkaeaacaaIYaaaaOWaaeWaaeaaceWGWbGbaeba daqhaaWcbaGaamOzaaqaaiaaicdaaaGccqGHsislcaWGWbWaaSbaaS qaaiaadAfaaeqaaOGaey4kaSIaam4zaiabeg8aYjaadQhadaWgaaWc baGaey4fIOcabeaaaOGaayjkaiaawMcaaiabgkHiTiaaikdacqaHap aCcqaHdpWCdaWgaaWcbaGaamitaiaadEeaaeqaaOGaamOCamaaBaaa leaacqGHxiIkaeqaaOGaci4yaiaac+gacaGGZbGaeqy0dO0aaSbaaS qaaiabgEHiQaqabaGccqGHsislcaWGhbWaaSbaaSqaaiaaicdaaeqa aOGaeyypa0JaaGimaaaa@5C65@  (4.2)

Согласно формуле (4.2), при p V >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaakiabg6da+iaaicdaaaa@3B5F@  капля дополнительно притягивается к подложке, а при p V <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaakiabgYda8iaaicdaaaa@3B5B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  дополнительно отталкивается от нее.

На рис. 10 изображены расчетные формы равновесной водяной капли эталонного диаметра D0=3 мм при разных значениях дополнительной силы p V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaaaaa@3993@ . Кривая 1 получена при p V =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaakiabg2da9iaaicdaaaa@3B5D@ , ей соответствует значение угла смачивания θ= 116 4 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGymaiaaigdacaaI2aWaaWbaaSqabeaacqWIyiYBaaGccaaI0aGa bGOnayaafaaaaa@3F84@ ; кривая 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  при pV=3107 Па, для которой θ= 99 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGyoaiaaiMdadaahaaWcbeqaaiablIHiVbaakiaaikdaceaIYaGb auaaaaa@3ECE@ ; кривая 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  при pV=1.652105 Па, ей соответствует значение θ= 162 2 6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGymaiaaiAdacaaIYaWaaWbaaSqabeaacqWIyiYBaaGccaaIYaGa bGOnayaafaaaaa@3F83@ .

 

Рис. 10. Расчетные меридиональные сечения водяных капель с эталонным диаметром D0=3мм при наличии дополнительного взаимодействия p V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGak0dg9vrFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaaaaa@3C2E@  между жидкостью и подложкой

 

Кривая 1 на рис. 10 полностью совпадает с кривой 3 на рис. 7,б (т.е. рассматривается нетривиальное решение второго типа). Кривая 2 на рис. 10 соответствует предельному (критическому) значению, когда при pV=3107 Па оба типа решения совпадают; при pV>3107 Па нетривиальная равновесная форма водяной капли эталонного диаметра D0=3 мм не существует. Кривая 3 на рис. 10 в определенном смысле также является предельной, так как при pV<1.652105 Па никакого нетривиального решения численно получить не удалось.

Из сравнения кривых 1 и 2 на рис. 10 видно, что в случае второго типа решения исследуемой задачи при дополнительном притяжении капли подложкой ( p V >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaakiabg6da+iaaicdaaaa@3B5F@  ) угол смачивания уменьшается по сравнению со случаем p V =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaakiabg2da9iaaicdaaaa@3B5D@ . Сопоставление же кривых 1 и 3 на рис. 10 свидетельствует о том, что при дополнительном отталкивании ( p V <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaakiabgYda8iaaicdaaaa@3B5B@  ) угол смачивания увеличивается и может превосходить значение θ= 160 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGymaiaaiAdacaaIWaWaaWbaaSqabeaacqWIyiYBaaaaaa@3DEF@ , т.е. подложка при этом может проявлять супергидрофобные свойства.

Как видно из представленных результатов, дополнительное взаимодействие действительно является малым ( pV=107...105 Па ) по сравнению с избыточным давлением в вершине капли p¯L0=10...102 Па (см. значения абсцисс точек A 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqamaaBaaale aacaaIZaaabeaaaaa@3946@  и B 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOqamaaBaaale aacaaIZaaabeaaaaa@3947@  на рис. 6,б) и величиной gρz20 Па (см. выражение в скобках в равенстве (4.2) и рис. 10).

Таким образом, учитывая дополнительное слабое взаимодействие между материалом подложки и жидкостью капли, можно моделировать изменение равновесной формы капли и угла смачивания при варьировании химического состава материала горизонтальной опорной плоскости, т.е. при варьировании ее поверхностно активных свойств.

Как уже отмечалось в разд. 4.1, при p V =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaakiabg2da9iaaicdaaaa@3B5D@  для водяных капель с эталонными диаметрами D0>3.894 мм нетривиальные решения рассматриваемой задачи не существуют. Однако при наличии дополнительного отталкивающего взаимодействия между жидкостью и подложкой ( p V <0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaakiabgYda8iaaicdaaaa@3B5B@  ) нетривиальные равновесные расчетные формы водяных капель диаметров D0>3.894 мм могут существовать. Расчеты показали, что при этом существует только одно нетривиальное решение рассматриваемой задачи, а угол смачивания капель больших диаметров зависит от величины p V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaqWaaeaacaWGWb WaaSbaaSqaaiaadAfaaeqaaaGccaGLhWUaayjcSdaaaa@3CBF@  и может изменяться от значений порядка 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGymamaaCaaale qabaGaeSigI8gaaaaa@39B9@  до 160 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGymaiaaiAdaca aIWaWaaWbaaSqabeaacqWIyiYBaaaaaa@3B33@  и более. Так, на рис. 11 кривые 1 и 2 соответствуют водяной капле эталонного диаметра D0=5 мм: кривая 1 получена при pV=4109 Па и ей соответствует угол смачивания θ= 11 3 7 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGymaiaaigdadaahaaWcbeqaaiablIHiVbaakiaaiodaceaI3aGb auaaaaa@3EC4@ , а кривая 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  при pV=2.8106 Па, для которой θ= 160 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGymaiaaiAdacaaIWaWaaWbaaSqabeaacqWIyiYBaaGcceaI0aGb auaaaaa@3EC3@ . Аналогично, кривые 3 и 4 на рис. 11 рассчитаны для водяной капли эталонного диаметра D0=20 мм, причем кривая 3, для которой θ= 90 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGyoaiaaicdadaahaaWcbeqaaiablIHiVbaakiqaiodagaqbaaaa @3E0A@ , соответствует случаю pV=3108 Па, а кривая 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  случаю pV=2107 Па и для нее θ= 161 3 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUdeNaeyypa0 JaaGymaiaaiAdacaaIXaWaaWbaaSqabeaacqWIyiYBaaGccaaIZaGa bGymayaafaaaaa@3F7E@ .

Таким образом, при наличии дополнительного слабого отталкивающего взаимодействия между жидкостью капли и материалом опорной горизонтальной плоскости действительно могут существовать нетривиальные равновесные формы капель больших эталонных диаметров, причем при относительно малых по модулю значениях дополнительной отталкивающей силы p V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaaaaa@3993@  опорная плоскость может проявлять гидрофильные свойства (см. кривую 1 на рис. 11), а при других (больших по модулю) значениях p V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaaaaa@3993@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  гидрофобные (см. кривую 3) и даже супергидрофобные свойства (см. кривые 2 и 4 на рис. 11).

 

Рис. 11. Расчетные меридиональные сечения водяных капель больших эталонных диаметров

 

Для экспериментального определения силы дополнительного взаимодействия p V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaaaaa@3993@  можно использовать метод ADSA [3, 13, 14], о котором уже упоминалось в разд. 1. Суть этого метода заключается в оцифровке фотографии равновесной капли сбоку с последующей обработкой полученного изображения MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  выделением границы профиля капли. В [3] рекомендуется использовать метод ADSA для определения коэффициента поверхностного натяжения σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaaaaa@3B23@  в уравнении Лапласа (1.1). Если же этот коэффициент уже известен из независимых экспериментов, проведенных на подложках из других материалов, то данный метод можно применить для вычисления силы p V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaaaaa@3993@ .

Действительно, как было показано выше, при известной силе поверхностного натяжения σ LG MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4Wdm3aaSbaaS qaaiaadYeacaWGhbaabeaaaaa@3B23@  и заданном объеме капли V 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaaIWaaabeaaaaa@3958@  ее равновесная форма однозначно определяется величиной избыточного давления в полюсной точке p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaaaa@3A5C@  (см. уравнения (2.1), (2.4) и (2.6) при учете выражений (2.5)). Если из эксперимента, проведенного на исследуемой подложке, с применением метода ADSA определена, например, высота равновесной капли z exp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOEamaaBaaale aaciGGLbGaaiiEaiaacchaaeqaaaaa@3B9D@  или радиус ее основания r exp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aaciGGLbGaaiiEaiaacchaaeqaaaaa@3B95@ , или площадь ее осевого сечения F exp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOramaaBaaale aaciGGLbGaaiiEaiaacchaaeqaaaaa@3B69@ , то следует провести расчет формы капли с пристрелкой по свободному параметру p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaaaa@3A5C@ , но в качестве разрешающих уравнений при этом необходимо использовать не соотношения (2.20) или (2.21), или (4.2), а одно из равенств (в зависимости от того, какой из геометрических параметров капли был измерен в эксперименте):

z = z exp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOEamaaBaaale aacqGHxiIkaeqaaOGaeyypa0JaamOEamaaBaaaleaaciGGLbGaaiiE aiaacchaaeqaaaaa@3EC7@  (4.3)

r = r exp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacqGHxiIkaeqaaOGaeyypa0JaamOCamaaBaaaleaaciGGLbGaaiiE aiaacchaaeqaaaaa@3EB7@  (4.4)

F= F exp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOraiabg2da9i aadAeadaWgaaWcbaGaciyzaiaacIhacaGGWbaabeaaaaa@3D3A@ , (4.5)

где F MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  расчетное значение площади осевого сечения капли, которое вычисляется по формуле [2, 3]

F=2 0 z rdz =2 0 s r s cosϑ s ds MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOraiabg2da9i aaikdadaWdXbqaaiaadkhacaWGKbGaamOEaaWcbaGaaGimaaqaaiaa dQhadaWgaaadbaGaey4fIOcabeaaa0Gaey4kIipakiabg2da9iaaik dadaWdXbqaaiaadkhadaqadaqaaiaadohaaiaawIcacaGLPaaaciGG JbGaai4BaiaacohacqaHrpGsdaqadaqaaiaadohaaiaawIcacaGLPa aacaWGKbGaam4CaaWcbaGaaGimaaqaaiaadohadaWgaaadbaGaey4f IOcabeaaa0Gaey4kIipaaaa@5599@  (4.6)

Величины z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOEamaaBaaale aacqGHxiIkaeqaaaaa@39B1@  и r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacqGHxiIkaeqaaaaa@39A9@  в соотношениях (4.3) и (4.4) определены равенствами (2.8).

После окончания пристрелки по параметру p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaaaa@3A5C@  с использований одного из уравнений (4.3) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (4.5) искомая сила дополнительного взаимодействия исследуемой подложки с каплей p V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaaaaa@3993@  определяется из уравнения силового баланса (4.2). Если пристрелка велась при учете равенства (4.3), то в уравнении (4.2) величины r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacqGHxiIkaeqaaaaa@39A9@ , p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaaaa@3A5C@  и ϑ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqy0dO0aaSbaaS qaaiabgEHiQaqabaaaaa@3A5A@  известны из расчета, а величина z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOEamaaBaaale aacqGHxiIkaeqaaaaa@39B1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  из эксперимента. Если же для пристрелки использовалось равенство (4.4), то в уравнении (4.2) значения z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOEamaaBaaale aacqGHxiIkaeqaaaaa@39B1@ , p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaaaa@3A5C@  и ϑ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqy0dO0aaSbaaS qaaiabgEHiQaqabaaaaa@3A5A@  берутся из расчета формы капли, а значение r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacqGHxiIkaeqaaaaa@39A9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  из эксперимента. Если же пристрелка велась с использованием равенства (4.5) при учете выражения (4.6), то в уравнении (4.2) все четыре величины r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacqGHxiIkaeqaaaaa@39A9@ , z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOEamaaBaaale aacqGHxiIkaeqaaaaa@39B1@ , p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaaaa@3A5C@  и ϑ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqy0dO0aaSbaaS qaaiabgEHiQaqabaaaaa@3A5A@  считаются известными из проведенного расчета.

В случаях, когда пристрелка ведется с использованием равенства (4.5) для повышения точности численного интегрирования целесообразно перейти от выражения (4.6) к дифференциальному уравнению

dF s ds =2r s cosϑ s ;s0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSaaaeaacaWGKb GaamOramaabmaabaGaam4CaaGaayjkaiaawMcaaaqaaiaadsgacaWG Zbaaaiabg2da9iaaikdacaWGYbWaaeWaaeaacaWGZbaacaGLOaGaay zkaaGaci4yaiaac+gacaGGZbGaeqy0dO0aaeWaaeaacaWGZbaacaGL OaGaayzkaaGaai4oaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaadohacqGHLjYScaaIWaaaaa@576C@  (4.7)

и соответствующим ему краевым условиям

F 0 =0,F s = F exp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOramaabmaaba GaaGimaaGaayjkaiaawMcaaiabg2da9iaaicdacaGGSaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGgbWaae WaaeaacaWGZbWaaSbaaSqaaiabgEHiQaqabaaakiaawIcacaGLPaaa cqGH9aqpcaWGgbWaaSbaaSqaaiGacwgacaGG4bGaaiiCaaqabaaaaa@52B6@  (4.8)

Если по каким-то причинам в эксперименте не удается достаточно точно измерить величину объема капли V 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaaIWaaabeaaaaa@3958@ , то вместо соотношений (3.6) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (3.8) можно использовать равенства (4.7) и (4.8), тогда при расчетах в неравенствах (3.12) и (3.13) следует сделать замены: VF MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvaiabgkziUk aadAeaaaa@3B2A@ , Δ V Δ F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuiLdqKaamOvam aaBaaaleaacqGHxiIkaeqaaOGaeyOKH4QaeuiLdqKaamOramaaBaaa leaacqGHxiIkaeqaaaaa@4036@  и V 0 F exp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaaIWaaabeaakiabgkziUkaadAeadaWgaaWcbaGaciyzaiaacIha caGGWbaabeaaaaa@3F21@ , где смысл всех замен вполне очевиден.

Вместо равенств (4.3) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (4.5) для пристрелки можно использовать условие равенства расчетного θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiabgEHiQaqabaaaaa@3A68@  и экспериментально определенного θ exp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiGacwgacaGG4bGaaiiCaaqabaaaaa@3C54@  значений угла смачивания: θ = θ exp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiabgEHiQaqabaGccqGH9aqpcqaH4oqCdaWgaaWcbaGaciyzaiaa cIhacaGGWbaabeaaaaa@4035@ . В этом случае в уравнении (4.2) величина ϑ =π/2 θ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqy0dO0aaSbaaS qaaiabgEHiQaqabaGccqGH9aqpcqaHapaCcaGGVaGaaGOmaiabgkHi TiabeI7aXnaaBaaaleaacqGHxiIkaeqaaaaa@4254@  (см. выражение (2.9)) известна из эксперимента, а величины r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOCamaaBaaale aacqGHxiIkaeqaaaaa@39A9@ , z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOEamaaBaaale aacqGHxiIkaeqaaaaa@39B1@  и p ¯ L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmiCayaaraWaa0 baaSqaaiaadYeaaeaacaaIWaaaaaaa@3A5C@  берутся из расчета. Как подчеркивается в [3], измерения размеров капли с точностью порядка 10 мкм позволяют определить величину угла θ exp MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqiUde3aaSbaaS qaaiGacwgacaGG4bGaaiiCaaqabaaaaa@3C54@  с точностью до 1%, что, по-видимому, вполне достаточно для практических приложений.

В разд. 1 уже отмечалось, что на форму капли могут оказывать влияние не только поверхностно активные свойства вещества подложки, но и шероховатость ее поверхности [6]. На настоящем этапе исследований влияние шероховатости можно моделировать с помощью формального введения фиктивной силы p V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaaaaa@3993@  дополнительного взаимодействия между каплей и подложкой, расчет которой (силы) проводится по описанной выше схеме с использованием результатов экспериментов и последующей их обработкой по методу ADSA [3]. В пользу такого формального подхода говорит и тот факт, что на равновесную форму капли могут оказывать совместное влияние как природные гидрофобные (гидрофильные) свойства материала подложки, так и шероховатость ее поверхности [4, 5]. Одновременно оба эти фактора можно учесть введением одной фиктивной силы p V MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiCamaaBaaale aacaWGwbaabeaaaaa@3993@ .

К сожалению, автор не располагает возможностью обработки экспериментальных данных по методу ADSA, поэтому не в состоянии продемонстрировать результаты соответствующих расчетов равновесных форм капель, покоящихся на реальных шероховатых поверхностях.

Заключение. Сформулирована задача расчета равновесной осесимметричной формы жидкой капли, покоящейся на недеформируемой горизонтальной плоскости. Впервые получено уравнение баланса сил, действующих на каплю в вертикальном направлении, которое замыкает постановку задачи и позволяет рассчитать краевой угол смачивания при известном коэффициенте поверхностного натяжения на границе жидкость MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  газ и заданном объеме капли. Разработан численный метод решения поставленной задачи, использующий пристрелку по свободному параметру MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  избыточному давлению в вершине капли. Для численного интегрирования системы нелинейных обыкновенных дифференциальных уравнений использован один из неявных методов Рунге MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Кутты четвертого порядка точности, а именно трехстадийный диагональный метод Барриджа.

Показано, что капли разного химического состава при одних и тех же условиях имеют разную равновесную форму и углы смачивания. Изменение равномерного давления газа не влияет на равновесную форму несжимаемой капли. Для капель малых диаметров получены два решения задачи. При этом в первом типе решения углы смачивания имеют значения меньше 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGyoaiaaicdada ahaaWcbeqaaiablIHiVbaaaaa@3A7B@ , а во втором решении MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  больше 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGyoaiaaicdada ahaaWcbeqaaiablIHiVbaaaaa@3A7B@ . Существует предельное максимально допустимое (критическое) значение объема капли, при котором оба решения совпадают, а угол смачивания близок к 90 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGyoaiaaicdada ahaaWcbeqaaiablIHiVbaaaaa@3A7B@ . Это критическое значение объема капли зависит от химического состава жидкости в ней. Так, для водяных капель этот критический расчетный объем равен объему капли шаровой формы с диаметром D03.89 мм, а для капель этилового спирта D02.46 мм. Равновесные осесимметричные формы капель большего, чем критический, объема могут существовать

на горизонтальной плоскости только при наличии дополнительного слабого отталкивающего взаимодействия между жидкостью капли и материалом подложки. Это могут быть силы электрохимического происхождения (ионное взаимодействие). Интенсивность указанных дополнительных сил по модулю имеет порядок 107...105 Па. При наличии таких отталкивающих сил существует единственное решение задачи для капель больших объемов. Равновесная форма таких капель существенно зависит от величины отталкивающей силы. При относительно малых значениях этой силы капли имеют малые значения углов смачивания (материал соответствующей подложки можно характеризовать как гидрофильный). При относительно больших значениях отталкивающей силы углы смачивания капель больших диаметров могут достигать значений 160 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGymaiaaiAdaca aIWaWaaWbaaSqabeaacqWIyiYBaaaaaa@3B33@  и более (материал соответствующей подложки можно характеризовать как гидрофобный и даже как супергидрофобный).

Возможность существования неединственной равновесной формы капли малого диаметра подтверждена натурными экспериментами.

×

About the authors

A. P. Yankovskii

Khristianovich Institute of Theoretical and Applied Mechanics of the SB RAS

Author for correspondence.
Email: yankovsky_ap@itam.nsc.ru
Russian Federation, Novosibirsk

References

  1. Voitik O.L., Delendik K.I., Kolyago N.V., Roshchin L.Yu. Factors influencing the wetting characteristics of parts of the steam chamber // J. of Engng. Phys.&Thermophys., 2020, vol. 93, no. 5, pp. 1126–1133. (in Russian)
  2. Matyukhin S.I., Frolenkov K.Yu. Shape of liquid drops placed on a solid horizontal surface // Condensed Matter&Interphase Boundaries, 2013, vol. 15, no. 3, pp. 292–304. (in Russian)
  3. Marchuk I.V., Cheverda V.V., Strizhak P.A., Kabov O.A. Determination of surface tension and contact angle by the axisymmetric bubble and droplet shape analysis // Thermophys. & Aeromech., 2015, vol. 22, no. 3, pp. 297–303.
  4. Bai M., Kazi H., Zhang X., Liu J., Hussain T. Robust hydrophobic surfaces from suspension HVOF thermal sprayed rare-earth oxide ceramics coatings // Article in Sci. Rep., 2018, vol. 8, no. 1, pp. 6973-1–6973-8.
  5. Xu P., Coyle T.W., Pershin L., Mostaghimi J. Fabrication of superhydrophobic ceramic coatings via solution precursor plasma spray under atmospheric and low-pressure conditions // J. Therm. Spray Tech., 2019, vol. 28, pp. 242–254.
  6. Gulyaev I.P., Kuzmin V.I., Kovalev O.B. Highly hydrophobic ceramic coatings produced by plasma spraying of powder materials // Thermophys.&Aeromech., 2020, vol. 27, no. 4, pp. 585–594.
  7. Contact Angle, Wettability, and Adhesion / ed. by Gould R.F. Washington: Amer. Chem. Soc. Advances in Chem. Ser., 1964.
  8. Finn R. Equilibrium Capillary Surfaces. N.Y.: Springer, 1986 p.
  9. Rusakov A.I., Prokhorov V.A. Interfacial Tensometry. St. Petersburg: Chemistry, 1994. 398 p. (in Russian)
  10. Saranin V.A. Equilibrium of Liquids and Its Stability. Simple Theory and Accessible Experiments. Moscow: Inst. for Comput. Res., 2002. pp. 73–76. (in Russian)
  11. De Gennes P.G., Brochard-Wyart F., Quere D. Capillarity and Wetting Phenomena. Berlin: Springer, 2004.
  12. Kupershtokh A.L., Lazebryi D.B. Contact angles in the presence of an electrical field // J. of Phys.: Conf. Ser., 2020, 1675, 012106, pp. 1–6. https://doi.org/10.1088/1742-6596/1675/1/012106
  13. Del Rio O.I., Neumann A.W. Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops // J. of Colloid&Interface Sci., 1997, vol. 196, no. 2, pp. 136–147.
  14. Zholob S.A., Makievski A.V., Miller R., Fainerman V.B. Optimization of calculation methods for determination of surface tensions by drop profile analysis tensiometry // Advances in Colloid&Interface Sci., 2007, no. 134, 135, pp. 322–329.
  15. Carmo M.P. Differential Geometry of Curves and Surfaces. New Jersey: Prentice-Hall Inc., 1976.
  16. Novozhilov V.V. Theory of Thin Shells. St. Petersburg.: St. Petersburg Univ. Pyb., 2010. 380 p. (in Russian)
  17. Vlasov V.Z., Leontiev N.N. Beams, Slabs and Shells on an Elastic Base. Moscow: Fizmatgiz, 1960. 491 p. (in Russian)
  18. Nowacki W. Teoria sprężystości. Warszawa: PAN, 1970.
  19. Hall G., Watt J.M. Modern Numerical Methods for Ordinary Differential Equations. Oxford: Clarendon, 1976.
  20. Dekker K., Verwer J.G. Stability of Runge–Kutta Methods for Stiff Nonlinear Differential Equation. Amsterdam: North-Holland, 1984. 308 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Meridional cross-section of an equilibrium axisymmetric droplet resting on a horizontal non-deformable substrate

Download (116KB)
3. Fig. 2. The edge point and its vicinity in a drop and substrate (a), only in a drop (b) and only in the substrate (c) with an indication of the system of forces applied to this point

Download (125KB)
4. Fig. 3. The shape of the drop meridian and its geometric characteristics

Download (84KB)
5. Fig. 4. Meridional cross-section of a drop with a contact angle of less than 90° and the system of forces applied to it

Download (108KB)
6. Fig. 5. Profile of a drop with a contact angle greater than 90° (a) and the lower part of this drop after applying the section method (b) indicating the system of forces applied to it

Download (89KB)
7. Fig. 6. Dependence of the residual in the force balance equation (2.20) on the magnitude of excess pressure at the top of a water drop: a) for drops with a standard diameter of 1 and 2 mm; b) for drops with a standard diameter of 3 and 3.894 mm.

Download (120KB)
8. Fig. 7. Calculated meridional cross-sections of water droplets of different standard diameters: a) first type of solution; b) second type of solution

Download (168KB)
9. Fig. 8. Calculated meridional cross-sections of ethyl alcohol droplets of different standard diameters: a) first type of solution; b) second type of solution

Download (108KB)
10. Fig. 9. Two equilibrium shapes of water droplets of the same reference diameter, resting on a polycarbonate substrate

Download (72KB)
11. Fig. 10. Calculated meridional cross-sections of water droplets with a standard diameter in the presence of additional interaction between the liquid and the substrate

Download (108KB)
12. Fig. 11. Calculated meridional cross-sections of water droplets of large standard diameters

Download (47KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».