Nonlinear stochastic estimation of the navigation parameters of the antenna of a mobile radio engineering complex by inertial-satellite measurements

Cover Page

Cite item

Full Text

Abstract

A general solution to the problem of stochastic estimation of navigation parameters of mast antennas of radio engineering complexes (RTCs) located on mobile objects is considered. It is shown that the existing methods for determining navigation parameters using measurements of satellite navigation systems or inertial orientation systems do not provide the required accuracy for solving this problem for such a class of antennas under the action of random disturbances on an object and/or mast.

In this regard, an algorithm is proposed for stochastic estimation of the navigation parameters of a mast antenna of a radio engineering complex located on a mobile object, invariant both to the nature of the movement of the mast and to the nature of the movement of the object. It is shown that this algorithm makes it possible to ensure stability and the required accuracy of estimation under the most general assumptions about the nature of interference of sensitive elements (CE) using a strapless inertial orientation system (BIS). To solve the problem, in the most general case, the BISO includes two groups of CES consisting of three orthogonal accelerometers and three angular velocity sensors (ARC) located, respectively, in the centers of mass of the object and the antenna.

The vectors of the Rodrigue–Hamilton parameters are used as the observed vectors of the navigation parameters of the antenna and the object, and the vector of the DUS output signals located in the center of mass of the antenna is used as their observer. Based on stochastic nonlinear equations of their state vectors and equations of stochastic models of DUS output signals constructed for the most general case of antenna and object motion, a generalized Kalman filter was formed, providing a general solution to the problem of estimating the navigation parameters of a mast antenna of arbitrary design placed on a moving object.

The presented results of numerical modeling allow us to conclude that the proposed approach can be used to solve the problem of high-precision determination of navigation parameters of mast antennas of radio engineering complexes located on mobile objects, using medium and high-precision BIS without correction over a long period of time.

Full Text

1. Введение. Для современных подвижных радиотехнических комплексов (РТК) точность пространственной ориентации их антенн, размещенных на мачтах различной конструкции, расположенных на объекте, является одним из основных факторов, определяющих эффективность функционирования подвижных РТК. Это, в свою очередь, выдвигает в качестве одной из центральных задач повышение точности определения ориентации антенн как в условиях возмущенного движения мачты, так и при произвольном характере движения объекта, причем, при неизбежных помехах измерения параметров движения как антенны, так и объекта [1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 3]. Актуальность этой задачи привела к интенсивным исследованиям в данном направлении и разработке ряда методов оценки пространственной ориентации антенны в условиях, как внешних возмущений, так и внутренних помех измерительного комплекса [4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 9]. Одним из широко распространенных является метод, использующий спутниковые измерения, применение которого позволяет решать одновременно как задачу пространственной ориентации, так и задачу определения текущих координат подвижного объекта [7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 13]. Главным преимуществом данного метода является отсутствие операции непрерывного интегрирования измерений чувствительных элементов (ЧЭ), приводящей к накоплению ошибок с течением времени (характерной для непосредственной обработки инерциальных измерений). В то же время низкая частота спутниковых сообщений наряду с высокой интенсивностью помех при их приеме существенно затрудняют использование подобных методов для решения задачи определения ориентации антенны, находящейся на высокодинамичном подвижном основании [14 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 18].

Альтернативным направлением определения ориентации антенн является использование показаний бесплатформенных инерциальных систем ориентации (БИСО) [18 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 23]. Но в большинстве современных методов, использующих БИСО, не учитывается динамика изменения параметров ориентации, измеряемых в условиях интенсивных помех, что не позволяет достичь требуемой точности и устойчивости процесса определения ориентации антенны подвижного РТК [1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 3]. В работе [22] был построен алгоритм оценки ориентации антенны стационарного РТК с учетом помех измерения БИСО в предположении, что антенна может изменять (в общем случае случайным образом) свою ориентацию относительно мачты. Реализация данного алгоритма, решающего задачу определения ориентации антенны на качающейся мачте, требует привлечения в составе БИСО трех датчиков угловой скорости (ДУС) и трех акселерометров. Но при расположении мачты с антенной на подвижном объекте определить ее ориентацию с данным составом ЧЭ БИСО и с использованием алгоритма [22] уже не удается.

В связи с этим рассмотрим далее для мачтовой антенны подвижного РТК синтез алгоритма оценки ее параметров ориентации, инвариантного к характеру движения, как подвижного объекта, так и мачты относительно объекта, и обеспечивающего устойчивость и требуемую точность оценивания ориентации при самых общих предположениях о характере помех ЧЭ, используемых в данном случае в составе БИСО.

2. Постановка задачи. Для последующего решения задачи автономной ориентации антенны на подвижном основании по измерениям БИСО в общей постановке полагаем далее, что центр масс (ЦМ) антенны соединен жестким стержнем длиной R (моделирующим мачту) с ЦМ подвижного объекта и может вращаться вокруг него с произвольной угловой скоростью во всех направлениях под действием внешних возмущений (рис. 1). В свою очередь, объект перемещается по сфере Земли с переменной высотой и совершает произвольное вращение относительно его ЦМ.

 

Рис. 1. Системы координат

 

Также введем следующие системы координат (СК) (рис. 1):

  • первую приборную СК J1 (ПСК1) Ox1y1z1 с началом в ЦМ объекта, оси которой направлены по взаимно ортогональным осям чувствительности ЧЭ первой группы, входящих в общий состав БИСО;
  • вторую приборную СК J2 (ПСК2) Ox2y2z2 с началом в ЦМ антенны, оси которой направлены по взаимно ортогональным осям чувствительности ЧЭ второй группы, входящих в состав БИСО;
  • сопровождающую СК S (ССК) OXSYSZS с началом в ЦМ объекта (одновременно MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  в точке крепления стержня длиной R), ось OYS которой лежит в плоскости местного меридиана и направлена на Север, ось OZS направлена от центра Земли, а ось OXS дополняет СК до правой;
  • опорную СК Q (ОСК) OXYZ с началом в ЦМ антенны, ось OZ которой направлена вдоль стержня длиной R, направления осей OX, OY, OZ в начальный момент времени совпадают с направлениями соответствующих осей ССК OXS, OYS, OZS;
  • инерциальную СК I (ИСК) Oξηξ с началом в центре Земли, ось Oη которой направлена по оси вращения Земли от ее центра, ось в начальный момент времени лежит в плоскости нулевого меридиана, а ось Oξ дополняет СК до правой;
  • геоцентрическую СК G (ГСК) OXGYGZG с началом в центре Земли, ось OYG которой направлена по оси вращения Земли от ее центра, ось OZG лежит в плоскости нулевого меридиана, а ось OXG дополняет систему координат до правой.

В соответствии с введенными СК, под задачей ориентации антенны, расположенной на качающейся мачте, размещенной, в свою очередь, на подвижном объекте, далее понимается текущая оценка параметров разворота (в качестве которых далее рассматриваются параметры Родрига MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Гамильтона [23]) ПСК2 J2 относительно ССК S при одновременном определении текущих координат (долготы λ и широты φ) ЦМ подвижного объекта в ГСК.

Полагаем также, что в состав БИСО входят две группы ЧЭ, состоящих из трех акселерометра и трех ДУС, расположенных ортогонально: первая группа MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  в ЦМ объекта, вторая группа MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  в ЦМ антенны. С целью сохранения общности решения в качестве моделей помех ЧЭ БИСО выберем аддитивные белые гауссовские шумы (БГШ) с нулевыми математическими ожиданиями и известными интенсивностями как наиболее адекватные практике использования БИСО. Учет корреляции помех или наличия в них регулярных составляющих (в том числе с неизвестными параметрами) легко обеспечивается соответствующим расширением вектора оцениваемых параметров и не влияет на существо предлагаемого далее подхода [24]. В этом случае модели выходных сигналов ЧЭ БИСО имеют вид [19 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 21]:

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ для акселерометров:

Z ai = a J i + W ai , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaacbeGaa8NwamaaBa aaleaacaWFHbGaamyAaaqabaGccqGH9aqpcaWHHbWaaSbaaSqaaiaa hQeaaeqaaOWaaSbaaSqaaiaadMgaaeqaaOGaey4kaSIaa83vamaaBa aaleaacaWFHbGaamyAaaqabaGccaGGSaaaaa@430F@

где i = 1,2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  номер группы ЧЭ, Z ai = Z axi Z ayi Z azi T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaacbeGaa8NwamaaBa aaleaacaWFHbGaamyAaaqabaGccqGH9aqpdaabdaqaauaabeqabmaa aeaacaWGAbWaaSbaaSqaaiaadggacaWG4bGaamyAaaqabaaakeaaca WGAbWaaSbaaSqaaiaadggacaWG5bGaamyAaaqabaaakeaacaWGAbWa aSbaaSqaaiaadggacaWG6bGaamyAaaqabaaaaaGccaGLhWUaayjcSd WaaWbaaSqabeaacaWGubaaaaaa@4B74@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор выходных сигналов трех ортогональных акселерометров i-й группы; a J i = a xi a yi a zi T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaCyyamaaBaaale aacaWHkbaabeaakmaaBaaaleaacaWGPbaabeaakiabg2da9maaemaa baqbaeqabeWaaaqaaiaadggadaWgaaWcbaGaamiEaiaadMgaaeqaaa GcbaGaamyyamaaBaaaleaacaWG5bGaamyAaaqabaaakeaacaWGHbWa aSbaaSqaaiaadQhacaWGPbaabeaaaaaakiaawEa7caGLiWoadaahaa Wcbeqaaiaadsfaaaaaaa@4903@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор ускорений ЦМ (объекта или антенны) в i-й ПСК; W a i = W xi W yi W zi T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaC4vamaaBaaale aacaWHHbaabeaakmaaBaaaleaacaWGPbaabeaakiabg2da9maaemaa baqbaeqabeWaaaqaaiaadEfadaWgaaWcbaGaamiEaiaadMgaaeqaaa GcbaGaam4vamaaBaaaleaacaWG5bGaamyAaaqabaaakeaacaWGxbWa aSbaaSqaaiaadQhacaWGPbaabeaaaaaakiaawEa7caGLiWoadaahaa Wcbeqaaiaadsfaaaaaaa@48F2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор помех измерения акселерометров i-й группы (центрированный БГШ с матрицей интенсивностей ai);

MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ для ДУС:

Z di = ω Ji + W di , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaCOwamaaBaaale aacaWHKbGaamyAaaqabaGccqGH9aqpcqaHjpWDdaWgaaWcbaGaaCOs aiaadMgaaeqaaOGaey4kaSIaaC4vamaaBaaaleaacaWHKbGaamyAaa qabaGccaGGSaaaaa@43D8@

где Z di = Z xi Z yi Z zi T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaCOwamaaBaaale aacaWHKbGaamyAaaqabaGccqGH9aqpdaabdaqaauaabeqabmaaaeaa caWGAbWaaSbaaSqaaiaadIhacaWGPbaabeaaaOqaaiaadQfadaWgaa WcbaGaamyEaiaadMgaaeqaaaGcbaGaamOwamaaBaaaleaacaWG6bGa amyAaaqabaaaaaGccaGLhWUaayjcSdWaaWbaaSqabeaacaWGubaaaa aa@48CB@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор выходных сигналов трех ортогональных ДУС i-й группы; ω J i = ω xi ω yi ω zi T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqedmvETj2BSbcvPD wzYbacfeGae8xYdC3aaSbaaSqaaiaahQeaaeqaaOWaaSbaaSqaaiaa dMgaaeqaaOGaeyypa0ZaaqWaaeaafaqabeqadaaabaGaeqyYdC3aaS baaSqaaiaadIhacaWGPbaabeaaaOqaaiabeM8a3naaBaaaleaacaWG 5bGaamyAaaqabaaakeaacqaHjpWDdaWgaaWcbaGaamOEaiaadMgaae qaaaaaaOGaay5bSlaawIa7amaaCaaaleqabaGaamivaaaaaaa@5149@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор абсолютной угловой скорости вращения i-й ПСК; W d i = W xi W yi W zi T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaC4vamaaBaaale aacaWHKbaabeaakmaaBaaaleaacaWGPbaabeaakiabg2da9maaemaa baqbaeqabeWaaaqaaiaadEfadaWgaaWcbaGaamiEaiaadMgaaeqaaa GcbaGaam4vamaaBaaaleaacaWG5bGaamyAaaqabaaakeaacaWGxbWa aSbaaSqaaiaadQhacaWGPbaabeaaaaaakiaawEa7caGLiWoadaahaa Wcbeqaaiaadsfaaaaaaa@48F5@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор помех измерения ДУС i-й группы (центрированный БГШ с матрицей интенсивностей di).

Таким образом, окончательно поставленную задачу можно сформулировать как задачу стохастического оценивания текущей ориентации ПСК2 J2 относительно ССК S при одновременном определении текущих координат (долготы и широты) ЦМ подвижного объекта по зашумленным измерениям ЧЭ БИСО при apriori неопределенном характере изменения векторов угловой скорости ЦМ антенны относительно начала ЦМ объекта (точки крепления мачты длиной R), антенны относительно ее ЦМ и самого подвижного объекта относительно его ЦМ при неизвестных углах начального рассогласования ПСК2 J2 и ССК S (т.е. неточно решенной задаче начальной выставки БИСО).

3. Решение задачи. Для решения поставленной задачи в самом общем случае математическая модель БИСО объекта должна быть инвариантна к характеру его движения, виду физической модели, модели возмущающих воздействий и т.п. Поэтому дальнейший синтез математической модели БИСО будем осуществлять в предположении обязательной ее инвариантности ко всем перечисленным факторам. С этой целью проведем следующие построения.

Текущая ориентация трехгранника S ССК относительно триэдра G ГСК описывается известными уравнениями [18, 20, 21, 25]:

  λ ˙ φ ˙ = 0 cosφ 1 1 0 = V Y S V X S r+H 1 ; MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaqWaaqaabeqaai qbeU7aSzaacaaabaGafqOXdOMbaiaaaaGaay5bSlaawIa7aiabg2da 9maaemaabaqbaeqabiGaaaqaaiaaicdaaeaadaqadaqaaiGacogaca GGVbGaai4CaiabeA8aQbGaayjkaiaawMcaamaaCaaaleqabaGaeyOe I0IaaGymaaaaaOqaaiaaigdaaeaacaaIWaaaaaGaay5bSlaawIa7ai abg2da9maaemaaeaqabeaacaWGwbWaaSbaaSqaaiaadMfadaWgaaad baGaam4uaaqabaaaleqaaaGcbaGaamOvamaaBaaaleaacaWGybWaaS baaWqaaiaadofaaeqaaaWcbeaaaaGccaGLhWUaayjcSdWaaeWaaeaa caWGYbGaey4kaSIaamisaaGaayjkaiaawMcaamaaCaaaleqabaGaey OeI0IaaGymaaaakiaacUdaaaa@5D9C@   λ 0 = λ 0 ,φ 0 , V Z S , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4UdW2aaeWaae aacaaIWaaacaGLOaGaayzkaaGaeyypa0Jaeq4UdW2aaSbaaSqaaiaa icdaaeqaaOGaaiilaiaaywW7cqaHgpGAdaqadaqaaiaaicdaaiaawI cacaGLPaaacaGGSaGaaGzbVlaadAfadaWgaaWcbaGaamOwamaaBaaa meaacaWGtbaabeaaaSqabaGccaGGSaaaaa@4B64@  (3.1)

где λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4UdWgaaa@394B@ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  долгота, φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOXdOgaaa@3954@ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  широта объекта, V X S MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaWGybWaaSbaaWqaaiaadofaaeqaaaWcbeaaaaa@3A8C@ , V Y S MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaWGzbWaaSbaaWqaaiaadofaaeqaaaWcbeaaaaa@3A8D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  проекции линейной скорости объекта на оси ССК, r MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  радиус Земли, H= H 0 + 0 t V Z S τ dτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisaiabg2da9i aadIeadaWgaaWcbaGaaGimaaqabaGccqGHRaWkdaWdXbqaaiaadAfa daWgaaWcbaGaamOwamaaBaaameaacaWGtbaabeaaaSqabaaabaGaaG imaaqaaiaadshaa0Gaey4kIipakmaabmaabaGaeqiXdqhacaGLOaGa ayzkaaGaamizaiabes8a0baa@4917@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  текущая высота объекта, H 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisamaaBaaale aacaaIWaaabeaaaaa@394B@ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  начальная высота, V Z S MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaWGAbWaaSbaaWqaaiaadofaaeqaaaWcbeaaaaa@3A8E@  − вертикальная скорость объекта в ССК.

Для синтеза уравнений неизвестных проекций V X S MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaWGybWaaSbaaWqaaiaadofaaeqaaaWcbeaaaaa@3A8C@ , V Y S MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaWGzbWaaSbaaWqaaiaadofaaeqaaaWcbeaaaaa@3A8D@  и V Z S MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaWGAbWaaSbaaWqaaiaadofaaeqaaaWcbeaaaaa@3A8E@  обратимся к основному уравнению инерциальной навигации [23, 25], записанному в ССК S для вектора ускорений A S = A X S A Y S A Z S T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqamaaBaaale aacaWGtbaabeaakiabg2da9maaemaabaqbaeqabeWaaaqaaiaadgea daWgaaWcbaGaamiwamaaBaaameaacaWGtbaabeaaaSqabaaakeaaca WGbbWaaSbaaSqaaiaadMfadaWgaaadbaGaam4uaaqabaaaleqaaaGc baGaamyqamaaBaaaleaacaWGAbWaaSbaaWqaaiaadofaaeqaaaWcbe aaaaaakiaawEa7caGLiWoadaahaaWcbeqaaiaadsfaaaaaaa@4767@ , измеряемых акселерометрами при движении объекта по поверхности сферы Земли:

A S = V ˙ S + 2 Ω S + ω S × V S g S , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqamaaBaaale aacaWGtbaabeaakiabg2da9iqadAfagaGaamaaBaaaleaacaWGtbaa beaakiabgUcaRmaabmaabaGaaGOmaiabfM6axnaaBaaaleaacaWGtb aabeaakiabgUcaRiabeM8a3naaBaaaleaacaWGtbaabeaaaOGaayjk aiaawMcaaiabgEna0kaadAfadaWgaaWcbaGaam4uaaqabaGccqGHsi slcaWGNbWaaSbaaSqaaiaadofaaeqaaOGaaiilaaaa@4D7A@  (3.2)

где V S = V X S V Y S V Z S T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaWGtbaabeaakiabg2da9maaemaabaqbaeqabeWaaaqaaiaadAfa daWgaaWcbaGaamiwamaaBaaameaacaWGtbaabeaaaSqabaaakeaaca WGwbWaaSbaaSqaaiaadMfadaWgaaadbaGaam4uaaqabaaaleqaaaGc baGaamOvamaaBaaaleaacaWGAbWaaSbaaWqaaiaadofaaeqaaaWcbe aaaaaakiaawEa7caGLiWoadaahaaWcbeqaaiaadsfaaaaaaa@47BA@ , Ω S = Ω X S Ω Y S Ω Z S T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuyQdC1aaSbaaS qaaiaadofaaeqaaOGaeyypa0ZaaqWaaeaafaqabeqadaaabaGaeuyQ dC1aaSbaaSqaaiaadIfadaWgaaadbaGaam4uaaqabaaaleqaaaGcba GaeuyQdC1aaSbaaSqaaiaadMfadaWgaaadbaGaam4uaaqabaaaleqa aaGcbaGaeuyQdC1aaSbaaSqaaiaadQfadaWgaaadbaGaam4uaaqaba aaleqaaaaaaOGaay5bSlaawIa7amaaCaaaleqabaGaamivaaaaaaa@4A86@  − вектор угловой скорости вращения Земли, проекции которого на оси выбранной ССК имеют вид:

Ω X S =0, Ω Y S =Ωcosφ, Ω Z S =Ωsinφ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuyQdC1aaSbaaS qaaiaadIfadaWgaaadbaGaam4uaaqabaaaleqaaOGaeyypa0JaaGim aiaacYcacaaMf8UaeuyQdC1aaSbaaSqaaiaadMfadaWgaaadbaGaam 4uaaqabaaaleqaaOGaeyypa0JaeuyQdCLaae4yaiaab+gacaqGZbGa eqOXdOMaaiilaiaaywW7cqqHPoWvdaWgaaWcbaGaamOwamaaBaaame aacaWGtbaabeaaaSqabaGccqGH9aqpcqqHPoWvciGGZbGaaiyAaiaa c6gacqaHgpGAcaGGSaaaaa@57E1@

Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuyQdCfaaa@3925@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  угловая скорость вращения Земли, ω S = ω X S ω Y S ω Z S tgφ T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpm0de9LqFHe9Lqpepe ea0xd9qs=JfrVkFve9pgeu0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vq pWqaaeaabiGaaiaadaqabeaabeqacqaaaOqaceaaWiqedmvETj2BSb cvPDwzYbacfeGae8xYdC3aaSbaaSqaaiaadofaaeqaaOGaeyypa0Za aqWaaeaafaqabeqaeaaaaeaacqaHjpWDdaWgaaWcbaGaamiwamaaBa aameaacaWGtbaabeaaaSqabaaakeaacqaHjpWDdaWgaaWcbaGaamyw amaaBaaameaacaWGtbaabeaaaSqabaaakeaacqaHjpWDdaWgaaWcba GaamOwamaaBaaameaacaWGtbaabeaaaSqabaaakeaacaqG0bGaae4z aiabeA8aQbaaaiaawEa7caGLiWoadaahaaWcbeqaaiaadsfaaaaaaa@51DC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор угловой скорости ССК, обусловленной движением объекта относительно Земли, ω Y S = V X S r+H 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacqaHjpWDda WgaaWcbaGaamywamaaBaaameaacaWGtbaabeaaaSqabaGccqGH9aqp caWGwbWaaSbaaSqaaiaadIfadaWgaaadbaGaam4uaaqabaaaleqaaO WaaeWaaeaacaWGYbGaey4kaSIaamisaaGaayjkaiaawMcaamaaCaaa leqabaGaeyOeI0IaaGymaaaaaaa@45C5@ ω X S = V Y S r+H 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacqaHjpWDda WgaaWcbaGaamiwamaaBaaameaacaWGtbaabeaaaSqabaGccqGH9aqp cqGHsislcaaMc8UaamOvamaaBaaaleaacaWGzbWaaSbaaWqaaiaado faaeqaaaWcbeaakmaabmaabaGaamOCaiabgUcaRiaadIeaaiaawIca caGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaaaa@483D@ , g S MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaC4zamaaBaaale aacaWGtbaabeaaaaa@398C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор ускорения силы тяжести.

Для рассматриваемой ориентации осей ССК проекции вектора g S = g X S g Y S g Z S T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaC4zamaaBaaale aacaWGtbaabeaakiabg2da9maaemaabaGaam4zamaaBaaaleaacaWG ybWaaSbaaWqaaiaadofaaeqaaaWcbeaakiaaykW7caWGNbWaaSbaaS qaaiaadMfadaWgaaadbaGaam4uaaqabaaaleqaaOGaaGPaVlaadEga daWgaaWcbaGaamOwamaaBaaameaacaWGtbaabeaaaSqabaaakiaawE a7caGLiWoadaahaaWcbeqaaiaadsfaaaaaaa@4B09@  на оси ССК определяются как:

g X S =0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWGNbWaaS baaSqaaiaadIfadaWgaaadbaGaam4uaaqabaaaleqaaOGaeyypa0Ja aGimaaaa@3C9B@ , g Y S = Ω 2 r+H cosφsinφ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWGNbWaaS baaSqaaiaadMfadaWgaaadbaGaam4uaaqabaaaleqaaOGaeyypa0Ja eyOeI0IaeuyQdC1aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWGYb Gaey4kaSIaamisaaGaayjkaiaawMcaaiGacogacaGGVbGaai4Caiab eA8aQjGacohacaGGPbGaaiOBaiabeA8aQjaacYcaaaa@4D54@   g Z S = Ω 2 r+H cos 2 φg, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWGNbWaaS baaSqaaiaadQfadaWgaaadbaGaam4uaaqabaaaleqaaOGaeyypa0Ja euyQdC1aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWGYbGaey4kaS IaamisaaGaayjkaiaawMcaaiGacogacaGGVbGaai4CamaaCaaaleqa baGaaGOmaaaakiabeA8aQjabgkHiTiaadEgacaGGSaaaaa@4A9F@

g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4zaaaa@3883@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  гравитационное ускорение.

Система уравнений (3.2) в проекциях на оси ССК S, с учетом приведенных проекций векторов g S MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaC4zamaaBaaale aacaWGtbaabeaaaaa@398C@  и Ω S MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaacceGae8xQdC1aaS baaSqaaiaadofaaeqaaaaa@3A2F@ , трансформируется к виду:

V ˙ X S = A X S + 2Ωsinφ+ V X S tgφ r+H 1 V Y S 2Ωcosφ+ V X S r+H 1 V Z S V ˙ Y S = A Y S 2Ωsinφ+ V X S tgφ r+H 1 V X S V Y S r+H 1 V Z S Ω 2 r+H cosφsinφ, V ˙ Z S = A Z S + 2Ωcosφ+ V X S r+H 1 V X S + V Y S 2 r+H 1 + Ω 2 r+H cos 2 φg MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceiGabeaaWiqaaiqadA fagaGaamaaBaaaleaacaWGybWaaSbaaWqaaiaadofaaeqaaaWcbeaa kiabg2da9iaadgeadaWgaaWcbaGaamiwamaaBaaameaacaWGtbaabe aaaSqabaGccqGHRaWkdaqadaqaaiaaikdacqqHPoWvciGGZbGaaiyA aiaac6gacqaHgpGAcqGHRaWkcaWGwbWaaSbaaSqaaiaadIfadaWgaa adbaGaam4uaaqabaaaleqaaOGaaeiDaiaabEgacqaHgpGAdaqadaqa aiaadkhacqGHRaWkcaWGibaacaGLOaGaayzkaaWaaWbaaSqabeaacq GHsislcaaIXaaaaaGccaGLOaGaayzkaaGaamOvamaaBaaaleaacaWG zbWaaSbaaWqaaiaadofaaeqaaaWcbeaakiabgkHiTmaabmaabaGaaG OmaiabfM6axjGacogacaGGVbGaai4CaiabeA8aQjabgUcaRiaadAfa daWgaaWcbaGaamiwamaaBaaameaacaWGtbaabeaaaSqabaGcdaqada qaaiaadkhacqGHRaWkcaWGibaacaGLOaGaayzkaaWaaWbaaSqabeaa cqGHsislcaaIXaaaaaGccaGLOaGaayzkaaGaamOvamaaBaaaleaaca WGAbWaaSbaaWqaaiaadofaaeqaaaWcbeaaaOqaaiqadAfagaGaamaa BaaaleaacaWGzbWaaSbaaWqaaiaadofaaeqaaaWcbeaakiabg2da9i aadgeadaWgaaWcbaGaamywamaaBaaameaacaWGtbaabeaaaSqabaGc cqGHsisldaqadaqaaiaaikdacqqHPoWvciGGZbGaaiyAaiaac6gacq aHgpGAcqGHRaWkcaWGwbWaaSbaaSqaaiaadIfadaWgaaadbaGaam4u aaqabaaaleqaaOGaaeiDaiaabEgacqaHgpGAdaqadaqaaiaadkhacq GHRaWkcaWGibaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaI XaaaaaGccaGLOaGaayzkaaGaamOvamaaBaaaleaacaWGybWaaSbaaW qaaiaadofaaeqaaaWcbeaakiabgkHiTiaadAfadaWgaaWcbaGaamyw amaaBaaameaacaWGtbaabeaaaSqabaGcdaqadaqaaiaadkhacqGHRa WkcaWGibaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaa aOGaamOvamaaBaaaleaacaWGAbWaaSbaaWqaaiaadofaaeqaaaWcbe aakiabgkHiTiabfM6axnaaCaaaleqabaGaaGOmaaaakmaabmaabaGa amOCaiabgUcaRiaadIeaaiaawIcacaGLPaaaciGGJbGaai4Baiaaco hacqaHgpGAciGGZbGaaiyAaiaac6gacqaHgpGAcaGGSaaabaGabmOv ayaacaWaaSbaaSqaaiaadQfadaWgaaadbaGaam4uaaqabaaaleqaaO Gaeyypa0JaamyqamaaBaaaleaacaWGAbWaaSbaaWqaaiaadofaaeqa aaWcbeaakiabgUcaRmaabmaabaGaaGOmaiabfM6axjGacogacaGGVb Gaai4CaiabeA8aQjabgUcaRiaadAfadaWgaaWcbaGaamiwamaaBaaa meaacaWGtbaabeaaaSqabaGcdaqadaqaaiaadkhacqGHRaWkcaWGib aacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGccaGL OaGaayzkaaGaamOvamaaBaaaleaacaWGybWaaSbaaWqaaiaadofaae qaaaWcbeaakiabgUcaRiaadAfadaqhaaWcbaGaamywamaaBaaameaa caWGtbaabeaaaSqaaiaaikdaaaGcdaqadaqaaiaadkhacqGHRaWkca WGibaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGa ey4kaSIaeuyQdC1aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWGYb Gaey4kaSIaamisaaGaayjkaiaawMcaaiGacogacaGGVbGaai4Camaa CaaaleqabaGaaGOmaaaakiabeA8aQjabgkHiTiaadEgaaaaa@E4E6@  (3.3)

В свою очередь, вектор ускорений A S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWGbbWaaS baaSqaaiaadofaaeqaaaaa@3996@ , измеряемых акселерометрами, может быть представлен в ССК следующим образом:

A S = C T Z a1 W a1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqamaaBaaale aacaWGtbaabeaakiabg2da9iaadoeadaahaaWcbeqaaiaadsfaaaGc daqadaqaaiaahQfadaWgaaWcbaGaamyyaiaaigdaaeqaaOGaeyOeI0 IaaC4vamaaBaaaleaacaWGHbGaaGymaaqabaaakiaawIcacaGLPaaa aaa@4431@ , (3.4)

где Z a1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaCOwamaaBaaale aacaWGHbGaaGymaaqabaaaaa@3A48@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор выходных сигналов акселерометров первой группы, W a1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaC4vamaaBaaale aacaWGHbGaaGymaaqabaaaaa@3A45@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор помех акселерометров первой группы, C=D B T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWHdbGaey ypa0JaaCiraiaahkeadaahaaWcbeqaaiaadsfaaaaaaa@3C3C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  матрица поворота (текущей ориентации) ПСК1 относительно ССК, D MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  матрица поворота [21, 25] ПСК1 относительно ИСК, B MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  матрица текущей ориентации ССК относительно ИСК (Приложение 1).

Соотношения (3.3), (3.4) позволяют записать дифференциальные уравнения, описывающие изменение проекций скорости V X S , V Y S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWGwbWaaS baaSqaaiaadIfadaWgaaadbaGaam4uaaqabaaaleqaaOGaaiilaiaa ysW7caWGwbWaaSbaaSqaaiaadMfadaWgaaadbaGaam4uaaqabaaale qaaaaa@3FFC@  и V Z S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWGwbWaaS baaSqaaiaadQfadaWgaaadbaGaam4uaaqabaaaleqaaaaa@3AC2@ , в следующей векторной форме Ланжевена:

V ˙ X S V ˙ Y S V ˙ Z S = C T Z a1 + 2 0 Ωcosφ Ωsinφ + r+H 1 V Y S V X S V X S tgφ × V X S V Y S V Z S + + 0 Ω 2 r+H cosφsinφ Ω 2 r+H cos 2 φg C T W a1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceiGabeaaWiqaamaaem aabiqaaaJafaqabeWabaaabaGabmOvayaacaWaaSbaaSqaaiaadIfa daWgaaadbaGaam4uaaqabaaaleqaaaGcbaGabmOvayaacaWaaSbaaS qaaiaadMfadaWgaaadbaGaam4uaaqabaaaleqaaaGcbaGabmOvayaa caWaaSbaaSqaaiaadQfadaWgaaadbaGaam4uaaqabaaaleqaaaaaaO Gaay5bSlaawIa7aiabg2da9iaahoeadaahaaWcbeqaaiaadsfaaaGc caWHAbWaaSbaaSqaaiaahggacaaIXaaabeaakiabgUcaRmaabmaaba WaaeWaaeaacaaIYaWaaqWaaeaafaqabeWabaaabaGaaGimaaqaaiab fM6axjGacogacaGGVbGaai4CaiabeA8aQbqaaiabfM6axjGacohaca GGPbGaaiOBaiabeA8aQbaaaiaawEa7caGLiWoacqGHRaWkdaqadaqa aiaadkhacqGHRaWkcaWGibaacaGLOaGaayzkaaWaaWbaaSqabeaacq GHsislcaaIXaaaaOWaaqWaaeaafaqabeWabaaabaGaeyOeI0IaamOv amaaBaaaleaacaWGzbWaaSbaaWqaaiaadofaaeqaaaWcbeaaaOqaai aadAfadaWgaaWcbaGaamiwamaaBaaameaacaWGtbaabeaaaSqabaaa keaacaWGwbWaaSbaaSqaaiaadIfadaWgaaadbaGaam4uaaqabaaale qaaOGaaeiDaiaabEgacqaHgpGAaaaacaGLhWUaayjcSdaacaGLOaGa ayzkaaGaey41aq7aaqWaaeaafaqabeWabaaabaGaamOvamaaBaaale aacaWGybWaaSbaaWqaaiaadofaaeqaaaWcbeaaaOqaaiaadAfadaWg aaWcbaGaamywamaaBaaameaacaWGtbaabeaaaSqabaaakeaacaWGwb WaaSbaaSqaaiaadQfadaWgaaadbaGaam4uaaqabaaaleqaaaaaaOGa ay5bSlaawIa7aaGaayjkaiaawMcaaiabgUcaRaqaaiabgUcaRmaaem aabaqbaeqabmqaaaqaaiaaicdaaeaacqGHsislcqqHPoWvdaahaaWc beqaaiaaikdaaaGcdaqadaqaaiaadkhacqGHRaWkcaWGibaacaGLOa GaayzkaaGaci4yaiaac+gacaGGZbGaeqOXdOMaci4CaiaacMgacaGG UbGaeqOXdOgabaGaeuyQdC1aaWbaaSqabeaacaaIYaaaaOWaaeWaae aacaWGYbGaey4kaSIaamisaaGaayjkaiaawMcaaiGacogacaGGVbGa ai4CamaaCaaaleqabaGaaGOmaaaakiabeA8aQjabgkHiTiaadEgaaa aacaGLhWUaayjcSdGaeyOeI0IaaC4qamaaCaaaleqabaGaamivaaaa kiaahEfadaWgaaWcbaGaaCyyaiaaigdaaeqaaOGaaiilaaaaaa@AF6B@  (3.5)

где высота объекта, входящая в уравнения (3.5), описывается уравнением

H ˙ = V Z S MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJaceWGibGbai aacqGH9aqpcaWGwbWaaSbaaSqaaiaadQfadaWgaaadbaGaam4uaaqa baaaleqaaaaa@3C9E@

В свою очередь, текущую ориентацию трехгранника ПСК1 J1 относительно трехгранника I ИСК зададим, используя параметры Родрига MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Гамильтона μ 1 , μ 2 , μ 3 , μ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacqaH8oqBda WgaaWcbaGaaGymaaqabaGccaGGSaGaaGzbVlabeY7aTnaaBaaaleaa caaIYaaabeaakiaacYcacaaMf8UaeqiVd02aaSbaaSqaaiaaiodaae qaaOGaaiilaiaaywW7cqaH8oqBdaWgaaWcbaGaaGinaaqabaaaaa@491E@ , определяющие матрицу D=D(μ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaCiraiabg2da9i aahseacaGGOaacceGae8hVd0Maaiykaaaa@3D4D@  (Приложение 2):

μ ˙ = 1 2 Φ μ ω J1 , μ 1 0 = μ 1 0 , μ 2 0 = μ 2 0 , μ 3 0 = μ 3 0 , μ 4 0 = μ 4 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJarmWu51MyVX giuL2zLjhaiuqacuWF8oqBgaGaaiabg2da9maalaaabaGaaGymaaqa aiaaikdaaaGaeuOPdy0aaeWaaeaacqWF8oqBaiaawIcacaGLPaaaii qacqGFjpWDdaWgaaWcbaGaaCOsaiaaigdaaeqaaOGaaiilaiaaysW7 cqaH8oqBdaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaaicdaaiaawI cacaGLPaaacqGH9aqpcqaH8oqBdaWgaaWcbaGaaGymamaaBaaameaa caaIWaaabeaaaSqabaGccaGGSaGaaGjbVlabeY7aTnaaBaaaleaaca aIYaaabeaakmaabmaabaGaaGimaaGaayjkaiaawMcaaiabg2da9iab eY7aTnaaBaaaleaacaaIYaWaaSbaaWqaaiaaicdaaeqaaaWcbeaaki aacYcacaaMe8UaeqiVd02aaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaa caaIWaaacaGLOaGaayzkaaGaeyypa0JaeqiVd02aaSbaaSqaaiaaio dadaWgaaadbaGaaGimaaqabaaaleqaaOGaaiilaiaaysW7cqaH8oqB daWgaaWcbaGaaGinaaqabaGcdaqadaqaaiaaicdaaiaawIcacaGLPa aacqGH9aqpcqaH8oqBdaWgaaWcbaGaaGinamaaBaaameaacaaIWaaa beaaaSqabaGccaGGSaaaaa@78E4@  (3.6)

где

μ= μ 1 μ 2 μ 3 μ 4 T ,Φ μ = μ 2 μ 3 μ 4 μ 1 μ 4 μ 3 μ 4 μ 1 μ 2 μ 3 μ 2 μ 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJarmWu51MyVX giuL2zLjhaiuqacqWF8oqBcqGH9aqpdaabdaqaauaabeqabqaaaaqa aiabeY7aTnaaBaaaleaacaaIXaaabeaaaOqaaiabeY7aTnaaBaaale aacaaIYaaabeaaaOqaaiabeY7aTnaaBaaaleaacaaIZaaabeaaaOqa aiabeY7aTnaaBaaaleaacaaI0aaabeaaaaaakiaawEa7caGLiWoada ahaaWcbeqaaiaadsfaaaGccaGGSaGaaGzbVlabfA6agnaabmaabaGa e8hVd0gacaGLOaGaayzkaaGaeyypa0ZaaqWaaeaafaqabeabdaaaae aacqGHsislcqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakeaacqGHsisl cqaH8oqBdaWgaaWcbaGaaG4maaqabaaakeaacqGHsislcqaH8oqBda WgaaWcbaGaaGinaaqabaaakeaacqaH8oqBdaWgaaWcbaGaaGymaaqa baaakeaacqGHsislcqaH8oqBdaWgaaWcbaGaaGinaaqabaaakeaacq aH8oqBdaWgaaWcbaGaaG4maaqabaaakeaacqaH8oqBdaWgaaWcbaGa aGinaaqabaaakeaacqaH8oqBdaWgaaWcbaGaaGymaaqabaaakeaacq GHsislcqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakeaacqGHsislcqaH 8oqBdaWgaaWcbaGaaG4maaqabaaakeaacqaH8oqBdaWgaaWcbaGaaG OmaaqabaaakeaacqaH8oqBdaWgaaWcbaGaaGymaaqabaaaaaGccaGL hWUaayjcSdGaaiilaaaa@7F74@

ω J1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJarmWu51MyVX giuL2zLjhaiuqacqWFjpWDdaWgaaWcbaGaaCOsaiaaigdaaeqaaaaa @4001@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор абсолютной угловой скорости вращения первого приборного трехгранника, который может быть выражен через вектор показаний Z d1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaCOwamaaBaaale aacaWHKbGaaGymaaqabaaaaa@3A4F@  трех ДУС первой группы:

ω J1 = Z d1 W d1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqedmvETj2BSbcvPD wzYbacfeGae8xYdC3aaSbaaSqaaGqabiaa+PeacaaIXaaabeaakiab g2da9iaahQfadaWgaaWcbaGaamizaiaaigdaaeqaaOGaeyOeI0IaaC 4vamaaBaaaleaacaWGKbGaaGymaaqabaaaaa@4738@ , (3.7)

где W d1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaC4vamaaBaaale aacaWGKbGaaGymaaqabaaaaa@3A48@ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор помех измерения ДУС первой группы.

С учетом (3.7) угловое движение объекта (3.6) относительно ИСК может быть представлено следующим образом:

μ ˙ = 1 2 Φ μ Z d1 W d1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqedmvETj2BSbcvPD wzYbacfeGaf8hVd0MbaiaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI YaaaaiabfA6agnaabmaabaGae8hVd0gacaGLOaGaayzkaaWaaeWaae aacaWHAbWaaSbaaSqaaiaadsgacaaIXaaabeaakiabgkHiTiaahEfa daWgaaWcbaGaamizaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@4D33@

Полученные выше уравнения и соотношения позволяют представить систему уравнений навигационных параметров исследуемого объекта в следующем виде:

μ ˙ = 1 2 Φ μ Z d1 W d1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqedmvETj2BSbcvPD wzYbacfeGaf8hVd0MbaiaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaI YaaaaiabfA6agnaabmaabaGae8hVd0gacaGLOaGaayzkaaWaaeWaae aacaWHAbWaaSbaaSqaaiaadsgacaaIXaaabeaakiabgkHiTiaahEfa daWgaaWcbaGaamizaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@4D33@  (3.8)

λ ˙ φ ˙ = 0 cosφ 1 1 0 V Y S V X S r+H 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJadaabdaqace aaWiqbaeqabiqaaaqaaiqbeU7aSzaacaaabaGafqOXdOMbaiaaaaaa caGLhWUaayjcSdGaeyypa0ZaaqWaaeaafaqabeGacaaabaGaaGimaa qaamaabmaabaGaci4yaiaac+gacaGGZbGaeqOXdOgacaGLOaGaayzk aaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGaaGymaaqaaiaaic daaaaacaGLhWUaayjcSdWaaqWaaeaafaqabeGabaaabaGaamOvamaa BaaaleaacaWGzbWaaSbaaWqaaiaadofaaeqaaaWcbeaaaOqaaiaadA fadaWgaaWcbaGaamiwamaaBaaameaacaWGtbaabeaaaSqabaaaaaGc caGLhWUaayjcSdWaaeWaaeaacaWGYbGaey4kaSIaamisaaGaayjkai aawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@5C42@

V ˙ X S V ˙ Y S V ˙ Z S = C T Z a1 + 2 0 Ωcosφ Ωsinφ + r+H 1 V Y S V X S V X S tgφ × V X S V Y S V Z S + + 0 Ω 2 r+H cosφsinφ Ω 2 r+H cos 2 φg C T W a1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceiGabeaaWiqaamaaem aabiqaaaJafaqabeWabaaabaGabmOvayaacaWaaSbaaSqaaiaadIfa daWgaaadbaGaam4uaaqabaaaleqaaaGcbaGabmOvayaacaWaaSbaaS qaaiaadMfadaWgaaadbaGaam4uaaqabaaaleqaaaGcbaGabmOvayaa caWaaSbaaSqaaiaadQfadaWgaaadbaGaam4uaaqabaaaleqaaaaaaO Gaay5bSlaawIa7aiabg2da9iaahoeadaahaaWcbeqaaiaadsfaaaGc caWHAbWaaSbaaSqaaiaahggacaaIXaaabeaakiabgUcaRmaabmaaba WaaeWaaeaacaaIYaWaaqWaaeaafaqabeWabaaabaGaaGimaaqaaiab fM6axjGacogacaGGVbGaai4CaiabeA8aQbqaaiabfM6axjGacohaca GGPbGaaiOBaiabeA8aQbaaaiaawEa7caGLiWoacqGHRaWkdaqadaqa aiaadkhacqGHRaWkcaWGibaacaGLOaGaayzkaaWaaWbaaSqabeaacq GHsislcaaIXaaaaOWaaqWaaeaafaqabeWabaaabaGaeyOeI0IaamOv amaaBaaaleaacaWGzbWaaSbaaWqaaiaadofaaeqaaaWcbeaaaOqaai aadAfadaWgaaWcbaGaamiwamaaBaaameaacaWGtbaabeaaaSqabaaa keaacaWGwbWaaSbaaSqaaiaadIfadaWgaaadbaGaam4uaaqabaaale qaaOGaaeiDaiaabEgacqaHgpGAaaaacaGLhWUaayjcSdaacaGLOaGa ayzkaaGaey41aq7aaqWaaeaafaqabeWabaaabaGaamOvamaaBaaale aacaWGybWaaSbaaWqaaiaadofaaeqaaaWcbeaaaOqaaiaadAfadaWg aaWcbaGaamywamaaBaaameaacaWGtbaabeaaaSqabaaakeaacaWGwb WaaSbaaSqaaiaadQfadaWgaaadbaGaam4uaaqabaaaleqaaaaaaOGa ay5bSlaawIa7aaGaayjkaiaawMcaaiabgUcaRaqaaiabgUcaRmaaem aabaqbaeqabmqaaaqaaiaaicdaaeaacqGHsislcqqHPoWvdaahaaWc beqaaiaaikdaaaGcdaqadaqaaiaadkhacqGHRaWkcaWGibaacaGLOa GaayzkaaGaci4yaiaac+gacaGGZbGaeqOXdOMaci4CaiaacMgacaGG UbGaeqOXdOgabaGaeuyQdC1aaWbaaSqabeaacaaIYaaaaOWaaeWaae aacaWGYbGaey4kaSIaamisaaGaayjkaiaawMcaaiGacogacaGGVbGa ai4CamaaCaaaleqabaGaaGOmaaaakiabeA8aQjabgkHiTiaadEgaaa aacaGLhWUaayjcSdGaeyOeI0IaaC4qamaaCaaaleqabaGaamivaaaa kiaahEfadaWgaaWcbaGaaCyyaiaaigdaaeqaaOGaaiilaaaaaa@AF6B@

H ˙ = V Z S , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJaceWGibGbai aacqGH9aqpcaWGwbWaaSbaaSqaaiaadQfadaWgaaadbaGaam4uaaqa baaaleqaaOGaaiilaaaa@3D58@

где C=C μ,λ,φ,t =D μ B T λ,φ,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWGdbGaey ypa0Jaam4qamaabmaabaqedmvETj2BSbcvPDwzYbacfeGae8hVd0Ma aiilaiaaysW7cqWF7oaBcaGGSaGaaGjbVhXatLxBI9gBGqvANvMCGu eEWvMC0bacgeGae4NXdOMaaiilaiaaysW7caWG0baacaGLOaGaayzk aaGaeyypa0JaamiramaabmaabaGae8hVd0gacaGLOaGaayzkaaGaam OqamaaCaaaleqabaGaamivaaaakmaabmaabaGae83UdWMaaiilaiaa ysW7cqGFgpGAcaGGSaGaaGjbVlaadshaaiaawIcacaGLPaaaaaa@65F3@ .

Для дальнейшего построения уравнений текущей ориентации антенны рассмотрим предварительно уравнения ее углового движения относительно мачты MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  разворота ПСК2 J2 относительно ОСК Q, описываемого вектором параметров Родрига MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Гамильтона η= η 1 η 2 η 3 η 4 T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJaiiqacqWF3o aAcqGH9aqpdaabdaqaauaabeqabqaaaaqaaiabeE7aOnaaBaaaleaa caaIXaaabeaaaOqaaiabeE7aOnaaBaaaleaacaaIYaaabeaaaOqaai abeE7aOnaaBaaaleaacaaIZaaabeaaaOqaaiabeE7aOnaaBaaaleaa caaI0aaabeaaaaaakiaawEa7caGLiWoadaahaaWcbeqaaiaadsfaaa aaaa@4937@  [23, 25]:

η ˙ = 1 2 Φ η ω JQ ;η 0 = η 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJarmWu51MyVX giuL2zLjhaiuqacuWF3oaAgaGaaiabg2da9maalaaabaGaaGymaaqa aiaaikdaaaGaeuOPdy0aaeWaaeaacqWF3oaAaiaawIcacaGLPaaacq WFjpWDdaWgaaWcbaacbeGaa4NsaiaadgfaaeqaaOGaai4oaiaaywW7 cqWF3oaAdaqadaqaaiaaicdaaiaawIcacaGLPaaacqGH9aqpcqWF3o aAdaWgaaWcbaGaaGimaaqabaGccaGGSaaaaa@5392@  (3.9)

где η 0 = η 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaacceGae83TdG2aae WaaeaacaaIWaaacaGLOaGaayzkaaGaeyypa0Jae83TdG2aaSbaaSqa aiaaicdaaeqaaaaa@3F1F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  неизвестные параметры начального рассогласования ПСК2 J2 и ОСК Q; w JQ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaG=DamaaBaaale aacaWGkbGaamyuaaqabaaaaa@3ADA@ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор случайной угловой скорости ПСК2 J2 (второго триэдра БИСО) относительно ОСК Q , аппроксимируемый центрированным БГШ с матрицей интенсивностей DJ.

Аналогично рассмотрим динамику изменения ориентации мачты относительно объекта MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  разворота ОСК Q относительно ПСК1 J1, описываемую вектором параметров Родрига MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Гамильтона λ= λ 1 λ 2 λ 3 λ 4 T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJaiiqacqWF7o aBcqGH9aqpdaabdaqaauaabeqabqaaaaqaaiabeU7aSnaaBaaaleaa caaIXaaabeaaaOqaaiabeU7aSnaaBaaaleaacaaIYaaabeaaaOqaai abeU7aSnaaBaaaleaacaaIZaaabeaaaOqaaiabeU7aSnaaBaaaleaa caaI0aaabeaaaaaakiaawEa7caGLiWoadaahaaWcbeqaaiaadsfaaa aaaa@495F@ :

λ ˙ = 1 2 Φ λ ω Q ;λ 0 = λ 0 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJaiiqacuWF7o aBgaGaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaeuOPdy0a aeWaaeaacqWF7oaBaiaawIcacaGLPaaacqWFjpWDdaWgaaWcbaGaam yuaaqabaGccaGG7aGaaGzbVlab=T7aSnaabmaabaGaaGimaaGaayjk aiaawMcaaiabg2da9iab=T7aSnaaBaaaleaacaaIWaaabeaakiaacY caaaa@4E36@  (3.10)

где ω Q = ω X ω Y 0 T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJaiiqacqWFjp WDdaWgaaWcbaGaamyuaaqabaGccqGH9aqpdaabdaqaauaabeqabmaa aeaacqaHjpWDdaWgaaWcbaGaamiwaaqabaaakeaacqaHjpWDdaWgaa WcbaGaamywaaqabaaakeaacaaIWaaaaaGaay5bSlaawIa7amaaCaaa leqabaGaamivaaaaaaa@4663@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор угловой скорости вращения ОСК Q относительно ПСК1 J1.

Для описания вектора ωQ угловой скорости движения ОСК Q относительно ПСК1 J1 воспользуемся выражением для вектора ускорения, возникающего при движении материальной точки (МТ) по сфере радиуса R, записанным в ОСК Q:

A Q = V ˙ Q + 2 Ω Q + ω Q × V Q g Q , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWHbbWaaS baaSqaaiaadgfaaeqaaOGaeyypa0tef4uz3r3BUneaiuqaceWFwbGb aiaadaWgaaWcbaGaamyuaaqabaGccqGHRaWkdaqadaqaaiaahkdaii qacqGFPoWvdaWgaaWcbaGaamyuaaqabaGccqGHRaWkcqGFjpWDdaWg aaWcbaGaamyuaaqabaaakiaawIcacaGLPaaacqGHxdaTcaWHwbWaaS baaSqaaiaadgfaaeqaaOGaeyOeI0IaaC4zamaaBaaaleaacaWGrbaa beaakiaacYcaaaa@508A@  (3.11)

где A Q = A X A Y A Z T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWHbbWaaS baaSqaaiaadgfaaeqaaOGaeyypa0ZaaqWaaeaafaqabeqadaaabaGa amyqamaaBaaaleaacaWGybaabeaaaOqaaiaadgeadaWgaaWcbaGaam ywaaqabaaakeaacaWGbbWaaSbaaSqaaiaadQfaaeqaaaaaaOGaay5b SlaawIa7amaaCaaaleqabaGaamivaaaaaaa@446D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор ускорений МТ в ОСК Q, V Q = V X V Y V Z T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWHwbWaaS baaSqaaiaadgfaaeqaaOGaeyypa0ZaaqWaaeaafaqabeqadaaabaGa amOvamaaBaaaleaacaWGybaabeaaaOqaaiaadAfadaWgaaWcbaGaam ywaaqabaaakeaacaWGwbWaaSbaaSqaaiaadQfaaeqaaaaaaOGaay5b SlaawIa7amaaCaaaleqabaGaamivaaaaaaa@44C1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор скорости МТ в ОСК; Ω Q = Ω X Ω Y Ω Z T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJaimqacqWFPo WvdaWgaaWcbaGaamyuaaqabaGccqGH9aqpdaabdaqaauaabeqabmaa aeaacqqHPoWvdaWgaaWcbaGaamiwaaqabaaakeaacqqHPoWvdaWgaa WcbaGaamywaaqabaaakeaacqqHPoWvdaWgaaWcbaGaamOwaaqabaaa aaGccaGLhWUaayjcSdWaaWbaaSqabeaacaWGubaaaaaa@478F@  − вектор угловой скорости вращения Земли в ОСК; g Q = g X g Y g Z T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWHNbWaaS baaSqaaiaadgfaaeqaaOGaeyypa0ZaaqWaaeaafaqabeqadaaabaGa am4zamaaBaaaleaacaWGybaabeaaaOqaaiaadEgadaWgaaWcbaGaam ywaaqabaaakeaacaWGNbWaaSbaaSqaaiaadQfaaeqaaaaaaOGaay5b SlaawIa7amaaCaaaleqabaGaamivaaaaaaa@4505@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор ускорения силы тяжести в ОСК.

В соответствии с приведенными выше выражениями проекций вектора угловой скорости вращения Земли и вектора ускорения силы тяжести на оси ССК S проекции векторов gQ, ΩQ на оси ОСК Q определяются как

Ω Q μ,λ,λ,φ,t = Ω X Ω Y Ω Z T =D λ C μ,λ,φ,t 0 Ωcosφ Ωsinφ g Q μ,λ,λ,φ,t = g X g Y g Z T =D λ C μ,λ,φ,t 0 Ω r+H cosφsinφ Ω 2 r+H cosφg , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceiGabeaaWiqaaGWabi ab=L6axnaaBaaaleaacaWGrbaabeaakmaabmaabaacceGae4hVd0Ma aiilaiab+T7aSjaacYcacqaH7oaBcaGGSaGaeqOXdOMaaiilaiaads haaiaawIcacaGLPaaacqGH9aqpdaabdaqaauaabeqabmaaaeaacqqH PoWvdaWgaaWcbaGaamiwaaqabaaakeaacqqHPoWvdaWgaaWcbaGaam ywaaqabaaakeaacqqHPoWvdaWgaaWcbaGaamOwaaqabaaaaaGccaGL hWUaayjcSdWaaWbaaSqabeaacaWGubaaaOGaeyypa0Jaamiramaabm aabaqedmvETj2BSbcvPDwzYbacfeGae03UdWgacaGLOaGaayzkaaGa am4qamaabmaabaGae4hVd0Maaiilaiab9T7aSjaacYcacqaHgpGAca GGSaGaamiDaaGaayjkaiaawMcaamaaemaabaqbaeqabmqaaaqaaiaa icdaaeaacqqHPoWvciGGJbGaai4BaiaacohacqaHgpGAaeaacqqHPo WvciGGZbGaaiyAaiaac6gacqaHgpGAaaaacaGLhWUaayjcSdaabaac beGaaW3zamaaBaaaleaacaWGrbaabeaakmaabmaabaGae4hVd0Maai ilaiab+T7aSjaacYcacqaH7oaBcaGGSaGaeqOXdOMaaiilaiaadsha aiaawIcacaGLPaaacqGH9aqpdaabdaqaauaabeqabmaaaeaacaWGNb WaaSbaaSqaaiaadIfaaeqaaaGcbaGaam4zamaaBaaaleaacaWGzbaa beaaaOqaaiaadEgadaWgaaWcbaGaamOwaaqabaaaaaGccaGLhWUaay jcSdWaaWbaaSqabeaacaWGubaaaOGaeyypa0JaamiramaabmaabaGa e03UdWgacaGLOaGaayzkaaGaam4qamaabmaabaGae4hVd0Maaiilai ab+T7aSjaacYcacqaHgpGAcaGGSaGaamiDaaGaayjkaiaawMcaamaa emaabaqbaeqabmqaaaqaaiaaicdaaeaacqGHsislcqqHPoWvdaqada qaaiaadkhacqGHRaWkcaWGibaacaGLOaGaayzkaaGaci4yaiaac+ga caGGZbGaeqOXdOMaci4CaiaacMgacaGGUbGaeqOXdOgabaGaeuyQdC 1aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWGYbGaey4kaSIaamis aaGaayjkaiaawMcaaiGacogacaGGVbGaai4CaiabeA8aQjabgkHiTi aadEgaaaaacaGLhWUaayjcSdGaaiilaaaaaa@C265@

где D λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaabmaaba qedmvETj2BSbcvPDwzYbacfeGae83UdWgacaGLOaGaayzkaaaaaa@404B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  матрица поворота (направляющих косинусов) ОСК Q относительно ПСК1 J1.

Система уравнений (3.11) в проекциях на оси ОСК с учетом очевидных равенств

  ω X = V Y R 1 , ω Y = V X R 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacqaHjpWDda WgaaWcbaGaamiwaaqabaGccqGH9aqpcqGHsislcaWGwbWaaSbaaSqa aiaadMfaaeqaaOGaamOuamaaCaaaleqabaGaeyOeI0IaaGymaaaaki aacYcacaaMf8UaeqyYdC3aaSbaaSqaaiaadMfaaeqaaOGaeyypa0Ja amOvamaaBaaaleaacaWGybaabeaakiaadkfadaahaaWcbeqaaiabgk HiTiaaigdaaaGccaGGSaaaaa@4CBD@

а также приведенных выше проекций векторов gQ, ΩQ, трансформируется к виду:

A X = ω ˙ Y R2 Ω Z μ,λ,λ,φ,t R ω X g X μ,λ,λ,φ,t A Y = ω ˙ X R2 Ω Z μ,λ,λ,φ,t ω X R g Y μ,λ,λ,φ,t A Z 2 Ω Y μ,λ,λ,φ,t + ω Y R ω Y + 2 Ω X μ,λ,λ,φ,t + ω X R ω X g Z μ,λ,λ,φ,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceiGabeaaWiqaaiaadg eadaWgaaWcbaGaamiwaaqabaGccqGH9aqpcuaHjpWDgaGaamaaBaaa leaacaWGzbaabeaakiaadkfacqGHsislcaaIYaGaeuyQdC1aaSbaaS qaaiaadQfaaeqaaOWaaeWaaeaaiiaacqWF8oqBcaGGSaacceGae43U dWMaaiilaiabeU7aSjaacYcacqaHgpGAcaGGSaGaamiDaaGaayjkai aawMcaaiaadkfacqaHjpWDdaWgaaWcbaGaamiwaaqabaGccqGHsisl caWGNbWaaSbaaSqaaiaadIfaaeqaaOWaaeWaaeaacqWF8oqBcaGGSa Gae43UdWMaaiilaiabeU7aSjaacYcacqaHgpGAcaGGSaGaamiDaaGa ayjkaiaawMcaaaqaaiaadgeadaWgaaWcbaGaamywaaqabaGccqGH9a qpcuaHjpWDgaGaamaaBaaaleaacaWGybaabeaakiaadkfacqGHsisl caaIYaGaeuyQdC1aaSbaaSqaaiaadQfaaeqaaOWaaeWaaeaacqWF8o qBcaGGSaGae43UdWMaaiilaiabeU7aSjaacYcacqaHgpGAcaGGSaGa amiDaaGaayjkaiaawMcaaiabeM8a3naaBaaaleaacaWGybaabeaaki aadkfacqGHsislcaWGNbWaaSbaaSqaaiaadMfaaeqaaOWaaeWaaeaa cqWF8oqBcaGGSaGae43UdWMaaiilaiabeU7aSjaacYcacqaHgpGAca GGSaGaamiDaaGaayjkaiaawMcaaaqaaiaadgeadaWgaaWcbaGaamOw aaqabaGcdaqadaqaaiaaikdacqqHPoWvdaWgaaWcbaGaamywaaqaba Gcdaqadaqaaiab=X7aTjaacYcacqGF7oaBcaGGSaGaeq4UdWMaaiil aiabeA8aQjaacYcacaWG0baacaGLOaGaayzkaaGaey4kaSIaeqyYdC 3aaSbaaSqaaiaadMfaaeqaaaGccaGLOaGaayzkaaGaamOuaiabeM8a 3naaBaaaleaacaWGzbaabeaakiabgUcaRmaabmaabaGaaGOmaiabfM 6axnaaBaaaleaacaWGybaabeaakmaabmaabaGae8hVd0Maaiilaiab +T7aSjaacYcacqaH7oaBcaGGSaGaeqOXdOMaaiilaiaadshaaiaawI cacaGLPaaacqGHRaWkcqaHjpWDdaWgaaWcbaGaamiwaaqabaaakiaa wIcacaGLPaaacaWGsbGaeqyYdC3aaSbaaSqaaiaadIfaaeqaaOGaey OeI0Iaam4zamaaBaaaleaacaWGAbaabeaakmaabmaabaGae8hVd0Ma aiilaiab+T7aSjaacYcacqaH7oaBcaGGSaGaeqOXdOMaaiilaiaads haaiaawIcacaGLPaaaaaaa@CDF3@  (3.12)

Вторая группа акселерометров измеряет как проекции вектора ускорений AQ на оси ПСК2: D η A Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWGebWaae WaaeaaiiqacqWF3oaAaiaawIcacaGLPaaacaWHbbWaaSbaaSqaaiaa dgfaaeqaaaaa@3D9C@ , так и проекции вектора ускорений ЦМ объекта, измеряемые первой группой акселерометров в ПСК1 (т.е. Z a1 W a1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaCOwamaaBaaale aacaWGHbGaaGymaaqabaGccqGHsislcaWHxbWaaSbaaSqaaiaadgga caaIXaaabeaaaaa@3DEC@  ), на оси ПСК2: D η D λ Z d1 W d1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaabmaaba acceGae83TdGgacaGLOaGaayzkaaGaamiramaabmaabaGae83UdWga caGLOaGaayzkaaGaaCOwamaaBaaaleaacaWGKbGaaGymaaqabaGccq GHsislcaWHxbWaaSbaaSqaaiaadsgacaaIXaaabeaaaaa@45F7@ . Таким образом, с учетом принятой модели измерений акселерометров, справедливо равенство:

D η A Q +D η D λ Z a1 W a1 + W a2 = Z a2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaabmaaba acceGae83TdGgacaGLOaGaayzkaaGaamyqamaaBaaaleaacaWGrbaa beaakiabgUcaRiaadseadaqadaqaaiab=D7aObGaayjkaiaawMcaai aadseadaqadaqaaiab=T7aSbGaayjkaiaawMcaamaabmaabaGaaCOw amaaBaaaleaacaWGHbGaaGymaaqabaGccqGHsislcaWHxbWaaSbaaS qaaiaadggacaaIXaaabeaaaOGaayjkaiaawMcaaiabgUcaRiaahEfa daWgaaWcbaGaamyyaiaaikdaaeqaaOGaeyypa0JaaCOwamaaBaaale aacaWGHbGaaGOmaaqabaaaaa@5582@ ,

где Z a2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaCOwamaaBaaale aacaWGHbGaaGOmaaqabaaaaa@3A49@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор выходных сигналов акселерометров второй группы, W a2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaC4vamaaBaaale aacaWGHbGaaGOmaaqabaaaaa@3A46@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор помех акселерометров второй группы, откуда имеем выражение вектора ускорений AQ:

A Q = D T η Z a2 W a2 D λ Z a1 W a1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyqamaaBaaale aacaWGrbaabeaakiabg2da9iaadseadaahaaWcbeqaaiaadsfaaaGc daqadaqaaiabeE7aObGaayjkaiaawMcaamaabmaabaGaaCOwamaaBa aaleaacaWGHbGaaGOmaaqabaGccqGHsislcaWHxbWaaSbaaSqaaiaa dggacaaIYaaabeaaaOGaayjkaiaawMcaaiabgkHiTiaadseadaqada qaaiabeU7aSbGaayjkaiaawMcaamaabmaabaGaaCOwamaaBaaaleaa caWGHbGaaGymaaqabaGccqGHsislcaWHxbWaaSbaaSqaaiaadggaca aIXaaabeaaaOGaayjkaiaawMcaaaaa@5440@

Данное соотношение совместно с уравнениями (3.12) позволяет сформировать стохастические уравнения, описывающие вектор ωQ угловой скорости движения ОСК относительно ПСК1:

ω ˙ Q = R 1 0 1 0 1 0 0 0 0 0 D T η Z a2 D λ Z a1 +2 Ω Z μ,λ,λ,φ,t 0 1 0 1 0 0 0 0 0 ω Q + + R 1 g Y μ,λ,λ,φ,t g X μ,λ,λ,φ,t 0 R 1 0 1 0 1 0 0 0 0 0 D λ D T η W a1 W a2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceiGabeaaWiqaaGGabi qb=L8a3zaacaWaaSbaaSqaaiaadgfaaeqaaOGaeyypa0JaeyOeI0Ia amOuamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaemaabaqbaeqabm WaaaqaaiaaicdaaeaacaaIXaaabaGaaGimaaqaaiaaigdaaeaacaaI WaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaaaaiaawE a7caGLiWoadaqadaqaaiaadseadaahaaWcbeqaaiaadsfaaaGcdaqa daqaaiab=D7aObGaayjkaiaawMcaaiaahQfadaWgaaWcbaGaaCyyai aaikdaaeqaaOGaeyOeI0IaamiramaabmaabaGae83UdWgacaGLOaGa ayzkaaGaaCOwamaaBaaaleaacaWHHbGaaGymaaqabaaakiaawIcaca GLPaaacqGHRaWkcaaIYaGaeuyQdC1aaSbaaSqaaiaadQfaaeqaaOWa aeWaaeaaiiaacqGF8oqBcaGGSaGae83UdWMaaiilaiabeU7aSjaacY cacqaHgpGAcaGGSaGaamiDaaGaayjkaiaawMcaamaaemaabaqbaeqa bmWaaaqaaiaaicdaaeaacqGHsislcaaIXaaabaGaaGimaaqaaiaaig daaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGim aaaaaiaawEa7caGLiWoacqWFjpWDdaWgaaWcbaGaamyuaaqabaGccq GHRaWkaeaacqGHRaWkcaWGsbWaaWbaaSqabeaacqGHsislcaaIXaaa aOWaaqWaaeaafaqabeWabaaabaGaeyOeI0Iaam4zamaaBaaaleaaca WGzbaabeaakmaabmaabaGae4hVd0Maaiilaiab=T7aSjaacYcacqaH 7oaBcaGGSaGaeqOXdOMaaiilaiaadshaaiaawIcacaGLPaaaaeaacq GHsislcaWGNbWaaSbaaSqaaiaadIfaaeqaaOWaaeWaaeaacqGF8oqB caGGSaGae83UdWMaaiilaiabeU7aSjaacYcacqaHgpGAcaGGSaGaam iDaaGaayjkaiaawMcaaaqaaiaaicdaaaaacaGLhWUaayjcSdGaeyOe I0IaamOuamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaemaabaqbae qabmWaaaqaaiaaicdaaeaacaaIXaaabaGaaGimaaqaaiaaigdaaeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaaaai aawEa7caGLiWoadaabdaqaaiaadseadaqadaqaaiab=T7aSbGaayjk aiaawMcaaiabl6UinjabgkHiTiaadseadaahaaWcbeqaaiaadsfaaa Gcdaqadaqaaiab=D7aObGaayjkaiaawMcaaaGaay5bSlaawIa7amaa emaabaqbaeqabiqaaaqaaiaahEfadaWgaaWcbaGaaCyyaiaaigdaae qaaaGcbaGaaC4vamaaBaaaleaacaWHHbGaaGOmaaqabaaaaaGccaGL hWUaayjcSdaaaaa@C381@  (3.13)

Здесь важно отметить, что полученная система уравнений, описывающая текущую ориентацию ОСК в ПСК1, в соответствии с поставленной задачей оказывается полностью инвариантна к характеру динамики движения основания (мачты), качающегося относительно начала ПСК1.

Объединяя системы уравнений (3.8) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (3.10), (3.13), стохастические уравнения полного вектора параметров текущей ориентации БИСО на подвижном основании запишем следующим образом:

Y ˙ =F Y,t + F 1 Y,t W, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJaceWHzbGbai aacqGH9aqpcaWHgbWaaeWaaeaaruGtLDhDV52qaGqbbiaa=LfacaGG SaGaamiDaaGaayjkaiaawMcaaiabgUcaRiaahAeadaWgaaWcbaGaaG ymaaqabaGcdaqadaqaaiaa=LfacaGGSaGaamiDaaGaayjkaiaawMca aiaahEfacaGGSaaaaa@49B8@  (3.14)

где

Y= μ T λ φ V S H η T λ T ω Q T T ,W= W d1 T W a1 T W a1 T W JQ T T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWHzbGaey ypa0ZaaqWaaeaafaqabeqaiaaaaaqaaGGabiab=X7aTnaaCaaaleqa baGaamivaaaaaOqaaiabeU7aSbqaaiabeA8aQbqaaiaadAfadaWgaa WcbaGaam4uaaqabaaakeaacaWGibaabaGae83TdG2aaWbaaSqabeaa caWGubaaaaGcbaGae83UdW2aaWbaaSqabeaacaWGubaaaaGcbaGae8 xYdC3aaSbaaSqaaiaahgfaaeqaaOWaaWbaaSqabeaacaWGubaaaaaa aOGaay5bSlaawIa7amaaCaaaleqabaGaamivaaaakiaacYcacaaMe8 UaaC4vaiabg2da9maaemaabaqbaeqabeabaaaabaGaaC4vamaaDaaa leaacaWHKbGaaGymaaqaaiaadsfaaaaakeaacaWHxbWaa0baaSqaai aahggacaaIXaaabaGaamivaaaaaOqaaiaahEfadaqhaaWcbaGaaCyy aiaaigdaaeaacaWGubaaaaGcbaGaaC4vamaaDaaaleaacaWHkbGaae yuaaqaaiaadsfaaaaaaaGccaGLhWUaayjcSdWaaWbaaSqabeaacaWG ubaaaaaa@6705@

F Y,t = 1 2 Φ μ Z d1 0 cos φ 1 1 0 V Y S V X S r+H 1 C T Z a1 + 2 0 Ωcosφ Ωsinφ + r+H 1 V Y S V X S V X S tgφ × V S + 0 Ω 2 r+H cosφsinφ Ω 2 r+H cosφg V Z S 0 λ ˙ = 1 2 Φ λ ω Q R 0 1 0 1 0 0 0 0 0 D T η Z a2 D λ Z a1 +2Ω μ,λ,λ,φ,t 0 1 0 1 0 0 0 0 0 ω Q + + R 1 g Y μ,λ,λ,φ,t g X μ,λ,λ,φ,t 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWHgbWaae WaaeaacaWHzbGaaiilaiaadshaaiaawIcacaGLPaaacqGH9aqpdaab daabaiqabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqqHMoGrdaqada qaaGGabiab=X7aTbGaayjkaiaawMcaaiaahQfadaWgaaWcbaGaaCiz aiaaigdaaeqaaaGcbaWaaqWaaeaafaqabeGacaaabaGaaGimaaqaam aabmaabaGaci4yaiaac+gacaGGZbGaeqOXdO2aaWbaaSqabeaacqGH sislcaaIXaaaaaGccaGLOaGaayzkaaaabaGaaGymaaqaaiaaicdaaa aacaGLhWUaayjcSdWaaqWaaeaafaqabeGabaaabaGaamOvamaaBaaa leaacaWGzbWaaSbaaWqaaiaadofaaeqaaaWcbeaaaOqaaiaadAfada WgaaWcbaGaamiwamaaBaaameaacaWGtbaabeaaaSqabaaaaaGccaGL hWUaayjcSdWaaeWaaeaacaWGYbGaey4kaSIaamisaaGaayjkaiaawM caamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqaaiaadoeadaahaaWc beqaaiaadsfaaaGccaWHAbWaaSbaaSqaaiaahggacaaIXaaabeaaki abgUcaRmaabmaabaWaaeWaaeaacaaIYaWaaqWaaeaafaqabeWabaaa baGaaGimaaqaaiabfM6axjGacogacaGGVbGaai4CaiabeA8aQbqaai abfM6axjGacohacaGGPbGaaiOBaiabeA8aQbaaaiaawEa7caGLiWoa cqGHRaWkdaqadaqaaiaadkhacqGHRaWkcaWGibaacaGLOaGaayzkaa WaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaqWaaeaafaqabeWabaaa baGaeyOeI0IaamOvamaaBaaaleaacaWGzbWaaSbaaWqaaiaadofaae qaaaWcbeaaaOqaaiaadAfadaWgaaWcbaGaamiwamaaBaaameaacaWG tbaabeaaaSqabaaakeaacaWGwbWaaSbaaSqaaiaadIfadaWgaaadba Gaam4uaaqabaaaleqaaOGaaeiDaiaabEgacqaHgpGAaaaacaGLhWUa ayjcSdaacaGLOaGaayzkaaGaey41aqRaamOvamaaBaaaleaacaWGtb aabeaaaOGaayjkaiaawMcaaiabgUcaRmaaemaabaqbaeqabmqaaaqa aiaaicdaaeaacqGHsislcqqHPoWvdaahaaWcbeqaaiaaikdaaaGcda qadaqaaiaadkhacqGHRaWkcaWGibaacaGLOaGaayzkaaGaci4yaiaa c+gacaGGZbGaeqOXdOMaci4CaiaacMgacaGGUbGaeqOXdOgabaGaeu yQdC1aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWGYbGaey4kaSIa amisaaGaayjkaiaawMcaaiGacogacaGGVbGaai4CaiabeA8aQjabgk HiTiaadEgaaaaacaGLhWUaayjcSdaabaGaamOvamaaBaaaleaacaWG AbWaaSbaaWqaaiaadofaaeqaaaWcbeaaaOqaaiaahcdaaeaarmWu51 MyVXgiuL2zLjhaiuqacuGF7oaBgaGaaiabg2da9maalaaabaGaaGym aaqaaiaaikdaaaGaeuOPdy0aaeWaaeaacqWF7oaBaiaawIcacaGLPa aacqWFjpWDdaWgaaWcbaGaamyuaaqabaaakeaacqGHsislcaWGsbWa aqWaaeaafaqabeWadaaabaGaaGimaaqaaiaaigdaaeaacaaIWaaaba GaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaa caaIWaaaaaGaay5bSlaawIa7amaabmaabaGaamiramaaCaaaleqaba GaamivaaaakmaabmaabaGae83TdGgacaGLOaGaayzkaaGaaCOwamaa BaaaleaacaWHHbGaaGOmaaqabaGccqGHsislcaWGebWaaeWaaeaacq WF7oaBaiaawIcacaGLPaaacaWHAbWaaSbaaSqaaiaahggacaaIXaaa beaaaOGaayjkaiaawMcaaiabgUcaRiaaikdacqqHPoWvdaqadaqaaG Gaaiab9X7aTjaacYcacqWF7oaBcaGGSaGaeq4UdWMaaiilaiabeA8a QjaacYcacaWG0baacaGLOaGaayzkaaWaaqWaaeaafaqabeWadaaaba GaaGimaaqaaiaaigdaaeaacaaIWaaabaGaaGymaaqaaiaaicdaaeaa caaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaaaGaay5bSlaawI a7aiab=L8a3naaBaaaleaacaWGrbaabeaakiabgUcaRaqaaiabgUca RiaadkfadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaabdaqaauaabe qadeaaaeaacqGHsislcaWGNbWaaSbaaSqaaiaadMfaaeqaaOWaaeWa aeaacqqF8oqBcaGGSaGae83UdWMaaiilaiabeU7aSjaacYcacqaHgp GAcaGGSaGaamiDaaGaayjkaiaawMcaaaqaaiaadEgadaWgaaWcbaGa amiwaaqabaGcdaqadaqaaiab9X7aTjaacYcacqWF7oaBcaGGSaGaeq 4UdWMaaiilaiabeA8aQjaacYcacaWG0baacaGLOaGaayzkaaaabaGa aGimaaaaaiaawEa7caGLiWoaaaGaay5bSlaawIa7aaaa@304F@

где 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  нулевая матрица соответствующей размерности.

Для стохастической оценки состояния нелинейных динамических систем вида (3.9) наиболее эффективным подходом в настоящее время является использование методов теории стохастической фильтрации [24, 26], из которых самым широко известным и общеупотребительным является нелинейный (расширенный или обобщенный) фильтр Калмана. Но для его применения необходим предварительный синтез уравнения наблюдателя компонентов вектора Y (т.е. информационной модели сигнала измерения, явно зависящей от составляющих вектора Y).

В рассматриваемом случае в качестве сигналов наблюдения вектора Y можно выбрать выходные сигналы трех ортогональных ДУС второй группы. Действительно, вектор ω J2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJaiiqacqWFjp WDdaWgaaWcbaGaaCOsaiaaikdaaeqaaaaa@3B5A@  абсолютной угловой скорости вращения ПСК2 J2, измеряемый ДУС второй группы, определяется суммой вектора ωJQ, проекций векторов ω Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJaiiqacqWFjp WDdaWgaaWcbaGaamyuaaqabaaaaa@3AA1@ , Ω Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJaiiqacqWFPo WvdaWgaaWcbaGaamyuaaqabaaaaa@3A61@  в ПСК2 J 2 ω QJ2 , Ω QJ2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbiqaaaJacaWGkbWaaS baaSqaaiaaikdaaeqaaOWaaeWaaeaaiiqacqWFjpWDdaWgaaWcbaGa aeyuaiaahQeacaaIYaaabeaakiaacYcacqWFPoWvdaWgaaWcbaGaae yuaiaahQeacaaIYaaabeaaaOGaayjkaiaawMcaaaaa@4453@  и проекции вектора абсолютной угловой скорости объекта ω J1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaacceGae8xYdC3aaS baaSqaaiaahQeacaaIXaaabeaaaaa@3B24@ , измеряемой первой группой ДУС в ПСК1, на оси ПСК2 ω J12 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaeWaaeaaiiqacq WFjpWDdaWgaaWcbaGaaCOsaiaaigdacaaIYaaabeaaaOGaayjkaiaa wMcaaaaa@3D73@ :

ω J2 = ω JQ + ω QJ2 + Ω QJ2 + ω J12 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqedmvETj2BSbcvPD wzYbacfeGae8xYdC3aaSbaaSqaaiaahQeacaaIYaaabeaakiabg2da 9iab=L8a3naaBaaaleaacaWHkbGaamyuaaqabaGccqGHRaWkcqWFjp WDdaWgaaWcbaGaaeyuaiaahQeacaaIYaaabeaaiiqakiab+TcaRGWa biab9L6axnaaBaaaleaacaqGrbGaaCOsaiaaikdaaeqaaOGaey4kaS Iae8xYdC3aaSbaaSqaaiaahQeacaaIXaGaaGOmaaqabaaaaa@53F7@ ,

где ω QJ2 =D η ω Q , Ω QJ2 =D η D λ C μ,λ,φ,t 0 Ωcosφ Ωsinφ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqedmvETj2BSbcvPD wzYbacfeGae8xYdC3aaSbaaSqaaiaadgfacaWHkbGaaGOmaaqabaGc cqGH9aqpcaWGebWaaeWaaeaacqWF3oaAaiaawIcacaGLPaaacqWFjp WDdaWgaaWcbaGaamyuaaqabaGccaGGSaGaaGjbVJWabiab+L6axnaa BaaaleaacaWGrbGaaCOsaiaaikdaaeqaaOGaeyypa0Jaamiramaabm aabaGae83TdGgacaGLOaGaayzkaaGaamiramaabmaabaGae83UdWga caGLOaGaayzkaaGaam4qamaabmaabaacceGae0hVd0MaaiilaiabeU 7aSjaacYcacqaHgpGAcaGGSaGaamiDaaGaayjkaiaawMcaamaaemaa baqbaeqabmqaaaqaaiaaicdaaeaacqqHPoWvciGGJbGaai4Baiaaco hacqaHgpGAaeaacqqHPoWvciGGZbGaaiyAaiaac6gacqaHgpGAaaaa caGLhWUaayjcSdaaaa@729C@

ω J12 =D η D λ Z d1 + W d1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqedmvETj2BSbcvPD wzYbacfeGae8xYdC3aaSbaaSqaaiaahQeacaaIXaGaaGOmaaqabaGc cqGH9aqpcaWGebWaaeWaaeaacqWF3oaAaiaawIcacaGLPaaacaWGeb WaaeWaaeaacqWF7oaBaiaawIcacaGLPaaadaqadaqaaiaahQfadaWg aaWcbaGaaCizaiaaigdaaeqaaOGaey4kaSIaaC4vamaaBaaaleaaca WHKbGaaGymaaqabaaakiaawIcacaGLPaaaaaa@517C@

Это позволяет, исходя из приведенного выражения для ω J2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaacceGae8xYdC3aaS baaSqaaGqabiaa+PeacaaIYaaabeaaaaa@3B26@  и уравнения вектора выходных сигналов ДУС второй группы, представить стохастическую модель вектора наблюдения следующим образом:

Z d2 = ω JQ +D η D λ C μ,λ,φ,t 0 Ωcosφ Ωsinφ + +D η D λ Z d1 W d1 + W d2 = H d Y,t + H d1 Y ω JQ W d1 W d2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaGabeaaieqacaWFAb WaaSbaaSqaaiaahsgacaaIYaaabeaakiabg2da9eXatLxBI9gBGqvA NvMCaGqbbiab+L8a3naaBaaaleaacaWHkbGaamyuaaqabaGccqGHRa WkcaWGebWaaeWaaeaacqGF3oaAaiaawIcacaGLPaaacaWGebWaaeWa aeaacqGF7oaBaiaawIcacaGLPaaacaWGdbWaaeWaaeaaiiqacqqF8o qBcaGGSaGaeq4UdWMaaiilaiabeA8aQjaacYcacaWG0baacaGLOaGa ayzkaaWaaqWaaeaafaqabeWabaaabaGaaGimaaqaaiabfM6axjGaco gacaGGVbGaai4CaiabeA8aQbqaaiabfM6axjGacohacaGGPbGaaiOB aiabeA8aQbaaaiaawEa7caGLiWoacqGHRaWkaeaacqGHRaWkcaWGeb WaaeWaaeaacqGF3oaAaiaawIcacaGLPaaacaWGebWaaeWaaeaacqGF 7oaBaiaawIcacaGLPaaadaqadaqaaiaahQfadaWgaaWcbaGaaCizai aaigdaaeqaaOGaeyOeI0IaaC4vamaaBaaaleaacaWHKbGaaGymaaqa baaakiaawIcacaGLPaaacqGHRaWkcaWHxbWaaSbaaSqaaiaahsgaca aIYaaabeaakiabg2da9iaahIeadaWgaaWcbaGaaCizaaqabaGcdaqa daqaaiaahMfacaGGSaGaamiDaaGaayjkaiaawMcaaiabgUcaRiaahI eadaWgaaWcbaGaaCizaiaaigdaaeqaaOWaaeWaaeaacaWHzbaacaGL OaGaayzkaaWaaqWaaeaafaqabeWabaaabaGae4xYdC3aaSbaaSqaai aahQeacaWGrbaabeaaaOqaaiaahEfadaWgaaWcbaGaaCizaiaaigda aeqaaaGcbaGaaC4vamaaBaaaleaacaWHKbGaaGOmaaqabaaaaaGcca GLhWUaayjcSdGaaiilaaaaaa@96AD@

где

H d Y,t =D η ω Q +D η D λ C μ,λ,φ,t 0 Ωcosφ Ωsinφ +D η D λ Z d1 H d1 Y = E 3 D η D λ E 3 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaGabeaacaWHibWaaS baaSqaaiaahsgaaeqaaOWaaeWaaeaacaWHzbGaaiilaiaadshaaiaa wIcacaGLPaaacqGH9aqpcaWGebWaaeWaaeaaiiqacqWF3oaAaiaawI cacaGLPaaacqWFjpWDdaWgaaWcbaGaamyuaaqabaGccqGHRaWkcaWG ebWaaeWaaeaacqWF3oaAaiaawIcacaGLPaaacaWGebWaaeWaaeaacq WF7oaBaiaawIcacaGLPaaacaWGdbWaaeWaaeaacqWF8oqBcaGGSaGa eq4UdWMaaiilaiabeA8aQjaacYcacaWG0baacaGLOaGaayzkaaWaaq WaaeaafaqabeWabaaabaGaaGimaaqaaiabfM6axjGacogacaGGVbGa ai4CaiabeA8aQbqaaiabfM6axjGacohacaGGPbGaaiOBaiabeA8aQb aaaiaawEa7caGLiWoacqGHRaWkcaWGebWaaeWaaeaacqWF3oaAaiaa wIcacaGLPaaacaWGebWaaeWaaeaacqWF7oaBaiaawIcacaGLPaaaca WHAbWaaSbaaSqaaiaahsgacaaIXaaabeaaaOqaaiaahIeadaWgaaWc baGaaCizaiaaigdaaeqaaOWaaeWaaeaacaWHzbaacaGLOaGaayzkaa Gaeyypa0ZaaqWaaeaacaWGfbWaaSbaaSqaaiaaiodaaeqaaOGaeSO7 I0KaeyOeI0IaamiramaabmaabaGae83TdGgacaGLOaGaayzkaaGaam iramaabmaabaGae83UdWgacaGLOaGaayzkaaGaeSO7I0Kaamyramaa BaaaleaacaaIZaaabeaaaOGaay5bSlaawIa7aiaacYcaaaaa@8ED5@  (3.15)

Е3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  единичная матрица размерности 3.

Несмотря на то, что данный наблюдатель позволяет в явном виде наблюдать подавляющее большинство компонентов вектора состояния Y, его особенностью является невозможность наблюдения вектора линейной скорости объекта VS, что существенно влияет на сходимость и устойчивость процесса оценивания всего вектора состояния. Для формирования сигнала наблюдения вектора скорости объекта VS можно привлечь или измерения доплеровского датчика скорости, или доплеровские измерения спутника. Рассмотрим второй вариант как более технологичный и дешевый, полагая при этом частоту поступления спутниковых измерений высокой (в настоящее время MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  до 100 Гц), позволяющей считать характер спутниковых измерений по отношению к динамике изменения навигационных параметров рассматриваемого объекта непрерывным [1, 4]. В этом случае информационный сигнал доплеровских измерений (псевдоскорости) ZV в ССК S может быть представлен, как показано в [20], следующим образом:

Z V = ξ c r+H cosφsinλ V ξc B 1 T φ,λ V S + η c r+H sinφ V ηc B 2 T φ,λ V S + ς c r+H cosφcosλ V ςc B 3 T φ,λ V S × × ξ c r+H cosφsinλ 2 + η c r+H sinφ 2 + ζ c r+H cosφcosλ 2 1 + + W Z V = H V Y,t + W V , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaGabeaacaWGAbWaaS baaSqaaiaadAfaaeqaaOGaeyypa0Zaamqaaeaadaqadaqaaiabe67a 4naaBaaaleaacaWGJbaabeaakiabgkHiTmaabmaabaGaamOCaiabgU caRiaadIeaaiaawIcacaGLPaaaciGGJbGaai4BaiaacohacqaHgpGA ciGGZbGaaiyAaiaac6gacqaH7oaBaiaawIcacaGLPaaaaiaawUfaam aabmaabaGaamOvamaaBaaaleaacqaH+oaEcaWGJbaabeaakiabgkHi TiaahkeadaqhaaWcbaWaaeWaaeaacaWHXaaacaGLOaGaayzkaaaaba GaaCivaaaakmaabmaabaGaeqOXdOMaaiilaiabeU7aSbGaayjkaiaa wMcaaiaadAfadaWgaaWcbaGaam4uaaqabaaakiaawIcacaGLPaaacq GHRaWkdaqadaqaaiabeE7aOnaaBaaaleaacaWGJbaabeaakiabgkHi TmaabmaabaGaamOCaiabgUcaRiaadIeaaiaawIcacaGLPaaaciGGZb GaaiyAaiaac6gacqaHgpGAaiaawIcacaGLPaaadaqabaqaaiaadAfa daWgaaWcbaGaeq4TdGMaam4yaaqabaaakiaawIcaaiabgkHiTaqaam aadiaabaWaaeGaaeaacqGHsislcaaMe8UaaCOqamaaDaaaleaadaqa daqaaiaahkdaaiaawIcacaGLPaaaaeaacaWHubaaaOWaaeWaaeaacq aHgpGAcaGGSaGaeq4UdWgacaGLOaGaayzkaaGaamOvamaaBaaaleaa caWGtbaabeaaaOGaayzkaaGaey4kaSYaaeWaaeaacqaHcpGvdaWgaa WcbaGaam4yaaqabaGccqGHsisldaqadaqaaiaadkhacqGHRaWkcaWG ibaacaGLOaGaayzkaaGaci4yaiaac+gacaGGZbGaeqOXdOMaci4yai aac+gacaGGZbGaeq4UdWgacaGLOaGaayzkaaWaaeWaaeaacaWGwbWa aSbaaSqaaiabek8awjaadogaaeqaaOGaeyOeI0IaaCOqamaaDaaale aadaqadaqaaiaahodaaiaawIcacaGLPaaaaeaacaWHubaaaOWaaeWa aeaacqaHgpGAcaGGSaGaeq4UdWgacaGLOaGaayzkaaGaaCOvamaaBa aaleaacaWGtbaabeaaaOGaayjkaiaawMcaaaGaayzxaaGaey41aqla baGaey41aqRaaGjbVpaakaaabaWaaeWaaeaacqaH+oaEdaWgaaWcba Gaam4yaaqabaGccqGHsisldaqadaqaaiaadkhacqGHRaWkcaWGibaa caGLOaGaayzkaaGaci4yaiaac+gacaGGZbGaeqOXdOMaci4CaiaacM gacaGGUbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aOGaey4kaSYaaeWaaeaacqaH3oaAdaWgaaWcbaGaam4yaaqabaGccq GHsisldaqadaqaaiaadkhacqGHRaWkcaWGibaacaGLOaGaayzkaaGa ci4CaiaacMgacaGGUbGaeqOXdOgacaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaOGaey4kaSYaaeWaaeaacqaH2oGEdaWgaaWcbaGaam4y aaqabaGccqGHsisldaqadaqaaiaadkhacqGHRaWkcaWGibaacaGLOa GaayzkaaGaci4yaiaac+gacaGGZbGaeqOXdOMaci4yaiaac+gacaGG ZbGaeq4UdWgacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqaba GcdaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGHRaWkaeaacqGHRaWk caaMe8Uaam4vamaaBaaaleaacaWGAbWaaSbaaWqaaiaadAfaaeqaaa Wcbeaakiabg2da9iaadIeadaWgaaWcbaGaamOvaaqabaGcdaqadaqa aiaahMfacaGGSaGaamiDaaGaayjkaiaawMcaaiabgUcaRiaadEfada WgaaWcbaGaamOvaaqabaGccaGGSaaaaaa@F9CF@  (3.16)

где ξ c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOVdG3aaSbaaS qaaiaadogaaeqaaaaa@3A6E@ , η c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeq4TdG2aaSbaaS qaaiaadogaaeqaaaaa@3A57@ , ς c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqOWdy1aaSbaaS qaaiaadogaaeqaaaaa@3A50@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  известные декартовы координаты спутника в ГСК, V ξc , V ηc , V ςc MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacqaH+oaEcaWGJbaabeaakiaacYcacaWGwbWaaSbaaSqaaiabeE7a OjaadogaaeqaaOGaaiilaiaadAfadaWgaaWcbaGaeqOWdyLaam4yaa qabaaaaa@43EC@ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  известные проекции вектора скорости спутника на оси ГСК, WV MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  БГШ с нулевым средним и известной интенсивностью DV, обусловленный погрешностями измерения, B i T φ,λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaCOqamaaDaaale aadaqadaqaaiaahMgaaiaawIcacaGLPaaaaeaacaWHubaaaOWaaeWa aeaacqaHgpGAcaGGSaGaeq4UdWgacaGLOaGaayzkaaaaaa@419B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  i-я строка матрицы B T φ,λ B φ,λ =B λ,φ,t t=0 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaCOqamaaCaaale qabaGaamivaaaakmaabmaabaGaeqOXdOMaaiilaiabeU7aSbGaayjk aiaawMcaamaabmaabaGaamOqamaabmaabaGaeqOXdOMaaiilaiabeU 7aSbGaayjkaiaawMcaaiabg2da9iaadkeadaabcaqaamaabmaabaGa eq4UdWMaaiilaiabeA8aQjaacYcacaWG0baacaGLOaGaayzkaaaaca GLiWoadaWgaaWcbaGaamiDaiabg2da9iaaicdaaeqaaaGccaGLOaGa ayzkaaGaaiOlaaaa@556D@

Функция наблюдения H V Y,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisamaaBaaale aacaWGwbaabeaakmaabmaabaGaaCywaiaacYcacaWG0baacaGLOaGa ayzkaaaaaa@3D89@  в (2.16) явно зависит от всех параметров линейного движения объекта, в т.ч. и от вектора скорости объекта VS, что позволяет в совокупности с наблюдателем (3.15) сформировать наблюдатель всех компонентов вектора Y. Т.к. спутниковый навигационный приемник кроме доплеровских измерений принимает еще и кодовые измерения, то для повышения информативности наблюдения их также целесообразно включить в состав комплексного наблюдателя. Учитывая, что модель информационного сигнала кодовых измерений имеет вид [13, 20]:

Z R = ξ c r+H cosφsinλ 2 + η c r+H sinφ + ς c r+H cosφcosλ 2 + + W Z R = H R Y,t + W Z R , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaGabeaacaWGAbWaaS baaSqaaiaadkfaaeqaaOGaeyypa0ZaaOaaaeaadaqadaqaaiabe67a 4naaBaaaleaacaWGJbaabeaakiabgkHiTmaabmaabaGaamOCaiabgU caRiaadIeaaiaawIcacaGLPaaaciGGJbGaai4BaiaacohacqaHgpGA ciGGZbGaaiyAaiaac6gacqaH7oaBaiaawIcacaGLPaaadaahaaWcbe qaaiaaikdaaaGccqGHRaWkdaqadaqaaiabeE7aOnaaBaaaleaacaWG JbaabeaakiabgkHiTmaabmaabaGaamOCaiabgUcaRiaadIeaaiaawI cacaGLPaaaciGGZbGaaiyAaiaac6gacqaHgpGAaiaawIcacaGLPaaa cqGHRaWkdaqadaqaaiabek8awnaaBaaaleaacaWGJbaabeaakiabgk HiTmaabmaabaGaamOCaiabgUcaRiaadIeaaiaawIcacaGLPaaaciGG JbGaai4BaiaacohacqaHgpGAciGGJbGaai4BaiaacohacqaH7oaBai aawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaabeaakiabgUcaRaqa aiabgUcaRiaaysW7caWGxbWaaSbaaSqaaiaadQfadaWgaaadbaGaam OuaaqabaaaleqaaOGaeyypa0JaamisamaaBaaaleaacaWGsbaabeaa kmaabmaabaGaaCywaiaacYcacaWG0baacaGLOaGaayzkaaGaey4kaS Iaam4vamaaBaaaleaacaWGAbWaaSbaaWqaaiaadkfaaeqaaaWcbeaa kiaacYcaaaaa@8347@

где WR MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  центрированный БГШ с известной интенсивностью DR, обусловленный алгоритмически нескомпенсированными ошибками часов спутников и приемника, задержками сигнала при прохождении ионосферы и тропосферы, ошибками многолучевости и другими погрешностями, уравнения комплексного наблюдателя можно записать следующим образом:

Z= Z d2 Z V Z R = H d Y,t H V Y,t H R Y,t + H d1 Y 0 0 E 2 ω JQ W d1 W d2 W V W R =H Y,t + H 1 Y ω JQ W d1 W d2 W V W R H Y,t = H d Y,t H V Y,t H R Y,t , H 1 Y = H d1 Y 0 0 E 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaGabeaacaWHAbGaey ypa0ZaaqWaaeaafaqabeWabaaabaGaaCOwamaaBaaaleaacaWHKbGa aGOmaaqabaaakeaacaWGAbWaaSbaaSqaaiaadAfaaeqaaaGcbaGaam OwamaaBaaaleaacaWGsbaabeaaaaaakiaawEa7caGLiWoacqGH9aqp daabdaqaauaabeqadeaaaeaacaWHibWaaSbaaSqaaiaahsgaaeqaaO WaaeWaaeaaruGtLDhDV52qaGqbbiaa=LfacaGGSaGaamiDaaGaayjk aiaawMcaaaqaaiaadIeadaWgaaWcbaGaamOvaaqabaGcdaqadaqaai aa=LfacaGGSaGaamiDaaGaayjkaiaawMcaaaqaaiaadIeadaWgaaWc baGaamOuaaqabaGcdaqadaqaaiaa=LfacaGGSaGaamiDaaGaayjkai aawMcaaaaaaiaawEa7caGLiWoacqGHRaWkdaabdaqaauaabeqacmaa aeaacaWHibWaaSbaaSqaaiaahsgacaaIXaaabeaakmaabmaabaGaa8 xwaaGaayjkaiaawMcaaaqaaiabl6UinbqaaiaaicdaaeaacaaIWaaa baGaeSO7I0eabaGaamyramaaBaaaleaacaaIYaaabeaaaaaakiaawE a7caGLiWoadaabdaqaauaabeqafeaaaaqaaGGabiab+L8a3naaBaaa leaacaWHkbGaamyuaaqabaaakeaacaWHxbWaaSbaaSqaaiaahsgaca aIXaaabeaaaOqaaiaahEfadaWgaaWcbaGaaCizaiaaikdaaeqaaaGc baGaam4vamaaBaaaleaacaWGwbaabeaaaOqaaiaadEfadaWgaaWcba GaamOuaaqabaaaaaGccaGLhWUaayjcSdGaeyypa0JaaCisamaabmaa baGaa8xwaiaacYcacaWG0baacaGLOaGaayzkaaGaey4kaSIaaCisam aaBaaaleaacaaIXaaabeaakmaabmaabaGaa8xwaaGaayjkaiaawMca amaaemaabaqbaeqabuqaaaaabaGae4xYdC3aaSbaaSqaaiaahQeaca WGrbaabeaaaOqaaiaahEfadaWgaaWcbaGaaCizaiaaigdaaeqaaaGc baGaaC4vamaaBaaaleaacaWHKbGaaGOmaaqabaaakeaacaWGxbWaaS baaSqaaiaadAfaaeqaaaGcbaGaam4vamaaBaaaleaacaWGsbaabeaa aaaakiaawEa7caGLiWoaaeaacaWHibWaaeWaaeaacaWFzbGaaiilai aadshaaiaawIcacaGLPaaacqGH9aqpdaabdaqaauaabeqadeaaaeaa caWHibWaaSbaaSqaaiaahsgaaeqaaOWaaeWaaeaacaWFzbGaaiilai aadshaaiaawIcacaGLPaaaaeaacaWGibWaaSbaaSqaaiaadAfaaeqa aOWaaeWaaeaacaWFzbGaaiilaiaadshaaiaawIcacaGLPaaaaeaaca WGibWaaSbaaSqaaiaadkfaaeqaaOWaaeWaaeaacaWFzbGaaiilaiaa dshaaiaawIcacaGLPaaaaaaacaGLhWUaayjcSdGaaiilaiaaywW7ca WHibWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWFzbaacaGLOaGa ayzkaaGaeyypa0ZaaqWaaeaafaqabeGadaaabaGaaCisamaaBaaale aacaWHKbGaaGymaaqabaGcdaqadaqaaiaa=LfaaiaawIcacaGLPaaa aeaacqWIUlstaeaacaaIWaaabaGaaGimaaqaaiabl6Uinbqaaiaadw eadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLhWUaayjcSdGaaiilaaaa aa@CA16@  (3.17)

где Е2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  единичная матрица размерности 2.

Уравнения (3.14), (3.17) «объект MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ наблюдатель» позволяют построить оценку вектора состояния Y в виде расширенного фильтра Калмана MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  наиболее эффективного на сегодняшний день алгоритма оценивания для динамических нелинейных стохастических систем. Особенностью здесь является наличие корреляции шумов объекта (3.14) и наблюдателя (3.17), которую необходимо далее учитывать при последующем построении фильтра.

Расширенный фильтр Калмана, построенный по уравнениям «объект MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ наблюдатель» (3.14), (3.17) и обеспечивающий принципиальное решение поставленной задачи, имеет следующий вид [21, 24]:

Y ˙ ^ =F Y ^ ,t +K Y ^ ,t ZH Y ^ ,t K Y ^ ,t = R H T Y ^ Y ^ +Θ H 1 Y ^ D H H 1 T Y ^ 1 R ˙ Y ^ ,t = F T Y ^ ,t Y ^ Θ H 1 Y ^ D H H 1 T Y ^ 1 H T Y ^ Y ^ R Y ^ ,t + +R Y ^ ,t F T Y ^ ,t Y ^ Θ H 1 Y ^ D H H 1 T Y ^ 1 H T Y ^ Y ^ + F 1 Y ^ ,t D 0 F 1 T Y ^ ,t R H T Y ^ Y ^ H 1 Y ^ D H H 1 T Y ^ 1 H T Y ^ Y ^ RΘ H 1 Y ^ D H H 1 T Y ^ 1 Θ T , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGceaGabeaadaqiaaqaai qahMfagaGaaaGaayPadaGaeyypa0JaamOramaabmaabaWaaecaaeaa caWHzbaacaGLcmaacaGGSaGaamiDaaGaayjkaiaawMcaaiabgUcaRi aadUeadaqadaqaamaaHaaabaGaaCywaaGaayPadaGaaiilaiaadsha aiaawIcacaGLPaaadaWadaqaaiaahQfacqGHsislcaWHibWaaeWaae aadaqiaaqaaiaahMfaaiaawkWaaiaacYcacaWG0baacaGLOaGaayzk aaaacaGLBbGaayzxaaaabaGaam4samaabmaabaWaaecaaeaacaWHzb aacaGLcmaacaGGSaGaamiDaaGaayjkaiaawMcaaiabg2da9maabmaa baGaamOuamaalaaabaGaeyOaIyRaaCisamaaCaaaleqabaGaamivaa aakmaabmaabaWaaecaaeaacaWHzbaacaGLcmaaaiaawIcacaGLPaaa aeaacqGHciITdaqiaaqaaiaahMfaaiaawkWaaaaacqGHRaWkcqqHyo quaiaawIcacaGLPaaadaqadaqaaiaahIeadaWgaaWcbaGaaGymaaqa baGcdaqadaqaamaaHaaabaGaaCywaaGaayPadaaacaGLOaGaayzkaa GaamiramaaBaaaleaacaWGibaabeaakiaahIeadaqhaaWcbaGaaGym aaqaaiaadsfaaaGcdaqadaqaamaaHaaabaGaaCywaaGaayPadaaaca GLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaI XaaaaaGcbaGabmOuayaacaWaaeWaaeaadaqiaaqaaiaahMfaaiaawk WaaiaacYcacaWG0baacaGLOaGaayzkaaGaeyypa0ZaaiWaaeaadaWc aaqaaiabgkGi2kaahAeadaahaaWcbeqaaiaadsfaaaGcdaqadaqaam aaHaaabaGaaCywaaGaayPadaGaaiilaiaadshaaiaawIcacaGLPaaa aeaacqGHciITdaqiaaqaaiaahMfaaiaawkWaaaaacqGHsislcqqHyo qudaqadaqaaiaahIeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaamaa HaaabaGaaCywaaGaayPadaaacaGLOaGaayzkaaGaamiramaaBaaale aacaWGibaabeaakiaahIeadaqhaaWcbaGaaGymaaqaaiaadsfaaaGc daqadaqaamaaHaaabaGaaCywaaGaayPadaaacaGLOaGaayzkaaaaca GLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaSaaaeaa cqGHciITcaWHibWaaWbaaSqabeaacaWGubaaaOWaaeWaaeaadaqiaa qaaiaahMfaaiaawkWaaaGaayjkaiaawMcaaaqaaiabgkGi2oaaHaaa baGaaCywaaGaayPadaaaaaGaay5Eaiaaw2haaiaadkfadaqadaqaam aaHaaabaGaaCywaaGaayPadaGaaiilaiaadshaaiaawIcacaGLPaaa cqGHRaWkaeaacqGHRaWkcaWGsbWaaeWaaeaadaqiaaqaaiaahMfaai aawkWaaiaacYcacaWG0baacaGLOaGaayzkaaWaaiWaaeaadaWcaaqa aiabgkGi2kaahAeadaahaaWcbeqaaiaadsfaaaGcdaqadaqaamaaHa aabaGaaCywaaGaayPadaGaaiilaiaadshaaiaawIcacaGLPaaaaeaa cqGHciITdaqiaaqaaiaahMfaaiaawkWaaaaacqGHsislcqqHyoquda qadaqaaiaahIeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaamaaHaaa baGaaCywaaGaayPadaaacaGLOaGaayzkaaGaamiramaaBaaaleaaca WGibaabeaakiaahIeadaqhaaWcbaGaaGymaaqaaiaadsfaaaGcdaqa daqaamaaHaaabaGaaCywaaGaayPadaaacaGLOaGaayzkaaaacaGLOa GaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaSaaaeaacqGH ciITcaWHibWaaWbaaSqabeaacaWGubaaaOWaaeWaaeaadaqiaaqaai aahMfaaiaawkWaaaGaayjkaiaawMcaaaqaaiabgkGi2oaaHaaabaGa aCywaaGaayPadaaaaaGaay5Eaiaaw2haaiabgUcaRiaahAeadaWgaa WcbaGaaGymaaqabaGcdaqadaqaamaaHaaabaGaaCywaaGaayPadaGa aiilaiaadshaaiaawIcacaGLPaaacaWGebWaaSbaaSqaaiaaicdaae qaaOGaaCOramaaDaaaleaacaaIXaaabaGaamivaaaakmaabmaabaWa aecaaeaacaWHzbaacaGLcmaacaGGSaGaamiDaaGaayjkaiaawMcaai abgkHiTaqaaiabgkHiTiaadkfadaWcaaqaaiabgkGi2kaahIeadaah aaWcbeqaaiaadsfaaaGcdaqadaqaamaaHaaabaGaaCywaaGaayPada aacaGLOaGaayzkaaaabaGaeyOaIy7aaecaaeaacaWHzbaacaGLcmaa aaWaaeWaaeaacaWHibWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaada qiaaqaaiaahMfaaiaawkWaaaGaayjkaiaawMcaaiaadseadaWgaaWc baGaamisaaqabaGccaWHibWaa0baaSqaaiaaigdaaeaacaWGubaaaO WaaeWaaeaadaqiaaqaaiaahMfaaiaawkWaaaGaayjkaiaawMcaaaGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaalaaaba GaeyOaIyRaaCisamaaCaaaleqabaGaamivaaaakmaabmaabaWaaeca aeaacaWHzbaacaGLcmaaaiaawIcacaGLPaaaaeaacqGHciITdaqiaa qaaiaahMfaaiaawkWaaaaacaWGsbGaeyOeI0IaeuiMde1aaeWaaeaa caWHibWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaadaqiaaqaaiaahM faaiaawkWaaaGaayjkaiaawMcaaiaadseadaWgaaWcbaGaamisaaqa baGccaWHibWaa0baaSqaaiaaigdaaeaacaWGubaaaOWaaeWaaeaada qiaaqaaiaahMfaaiaawkWaaaGaayjkaiaawMcaaaGaayjkaiaawMca amaaCaaaleqabaGaeyOeI0IaaGymaaaakiabfI5arnaaCaaaleqaba GaamivaaaakiaacYcaaaaa@27E0@  (3.18)

где Y ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaecaaeaacaWHzb aacaGLcmaaaaa@393B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  вектор текущей оценки вектора состояния Y(t); R Y ^ ,t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaabmaaba WaaecaaeaacaWHzbaacaGLcmaacaGGSaGaamiDaaGaayjkaiaawMca aaaa@3D44@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  апостериорная ковариационная матрица;

Y ^ 0 =M Y 0 ; R 0 =M Y 0 Y ^ 0 Y 0 Y ^ 0 T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaecaaeaacaWHzb aacaGLcmaadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaWGnbWaaeWa aeaacaWHzbWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaai 4oaiaaywW7caWGsbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0Jaamyt amaacmaabaWaaeWaaeaacaWHzbWaaSbaaSqaaiaaicdaaeqaaOGaey OeI0YaaecaaeaacaWHzbaacaGLcmaadaWgaaWcbaGaaGimaaqabaaa kiaawIcacaGLPaaadaqadaqaaiaahMfadaWgaaWcbaGaaGimaaqaba GccqGHsisldaqiaaqaaiaahMfaaiaawkWaamaaBaaaleaacaaIWaaa beaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamivaaaaaOGaay5Eai aaw2haaaaa@5643@

D 0 = D d1 0 0 D a1 0 0 D a2 0 0 D J , D H = D J 0 0 D d1 0 0 D d2 0 0 D V 0 0 D R ,Θ= F 1 Y ^ ,t 0 D d1 0 0 D J 0 H 1 T Y ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaaBaaale aacaaIWaaabeaakiabg2da9maaemaaeaqabeaacaWGebWaaSbaaSqa aiaadsgacaaIXaaabeaakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaahcdacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVdqaaiaaykW7caaMc8UaaGPaVlaaykW7caWH WaGaaGPaVlaaykW7caaMc8UaamiramaaBaaaleaacaWGHbGaaGymaa qabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahcdaaeaacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahc dacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGebWaaSba aSqaaiaadggacaaIYaaabeaakiaaykW7caaMc8UaaGPaVlaahcdaae aacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahcdacaaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadseadaWgaaWcbaGaamOsaaqabaaaaOGaay5bSl aawIa7aiaaykW7caGGSaGaaGPaVlaadseadaWgaaWcbaGaamisaaqa baGccqGH9aqpdaabdaabaeqabaGaamiramaaBaaaleaacaWGkbaabe aakiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCimaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8oabaGaaGPaVlaaykW7ca aMc8UaaCimaiaaykW7caaMc8UaaGPaVlaadseadaWgaaWcbaGaamiz aiaaigdaaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaCimaaqaaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCimaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaadseadaWgaaWcbaGaamizaiaaikda aeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCimai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVdqaaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaCimaiaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadseadaWgaa WcbaGaamOvaaqabaGccaaMc8UaaGPaVlaaykW7caaIWaaabaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahcdacaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua amiramaaBaaaleaacaWGsbaabeaaaaGccaGLhWUaayjcSdGaaiilai aaykW7caaMc8UaeuiMdeLaeyypa0JaaCOramaaBaaaleaacaaIXaaa beaakmaabmaabaGabCywayaajaGaaiilaiaadshaaiaawIcacaGLPa aadaabdaabaeqabaGaaCimaiaaykW7caaMc8UaaGPaVlaaykW7caWG ebWaaSbaaSqaaiaadsgacaaIXaaabeaakiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaahcdaaeaacaaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahc dacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8oabaGaamiramaaBaaaleaacaWGkbaabeaakiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHWaaaaiaa wEa7caGLiWoacaWHibWaaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabe aacaWGubaaaOWaaeWaaeaaceWHzbGbaKaaaiaawIcacaGLPaaaaaa@F734@

Для иллюстрации возможности эффективной практической реализации предложенного подхода был рассмотрен следующий пример.

4. Результаты имитационного моделирования. Для анализа устойчивости и сходимости процесса оценивания вектора Y(t) с использованием фильтра (3.18) было выполнено численное моделирование процесса оценки ориентации антенны на высокодинамичном подвижном основании. Моделирование осуществлялось на временно́м интервале [0, 1000] секунд с использованием при интегрировании уравнений оценки метода Рунге MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Кутты 4-го порядка с шагом 0.01 с.

Движение объекта задавалось вдоль местного меридиана из точки с долготой 30°, широтой 45° и высотой 3 м. Проекции скорости объекта на оси CСК задавались в функции времени как:

V X =0, V Y =100+sin0.02t, V Z =1.5cost, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aacaWGybaabeaakiabg2da9iaaicdacaGGSaGaaGzbVlaadAfadaWg aaWcbaGaamywaaqabaGccqGH9aqpcaaIXaGaaGimaiaaicdacqGHRa WkciGGZbGaaiyAaiaac6gacaaMc8UaaGimaiaac6cacaaIWaGaaGOm aiaadshacaGGSaGaaGzbVlaadAfadaWgaaWcbaGaamOwaaqabaGccq GH9aqpcaaIXaGaaiOlaiaaiwdaciGGJbGaai4BaiaacohacaWG0bGa aiilaaaa@57A3@

проекции вектора угловой скорости ω J1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqedmvETj2BSbcvPD wzYbacfeGae8xYdC3aaSbaaSqaaiaahQeacaaIXaaabeaaaaa@3FCD@ , соответственно:

ω x1 = 10 1 cos3t, ω y1 = 10 3 cos4t, ω z1 =1.5 10 2 cos7t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeqyYdC3aaSbaaS qaaiaadIhacaaIXaaabeaakiabg2da9iaaigdacaaIWaWaaWbaaSqa beaacqGHsislcaaIXaaaaOGaci4yaiaac+gacaGGZbGaaG4maiaads hacaGGSaGaaGjbVlabeM8a3naaBaaaleaacaWG5bGaaGymaaqabaGc cqGH9aqpcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaG4maaaaki GacogacaGGVbGaai4CaiaaisdacaWG0bGaaiilaiaaysW7cqaHjpWD daWgaaWcbaGaamOEaiaaigdaaeqaaOGaeyypa0JaaGymaiaac6caca aI1aGaeyyXICTaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaikda aaGcciGGJbGaai4BaiaacohacaaI3aGaamiDaaaa@666C@

Истинные текущие координаты объекта формировались путем интегрирования данных проекций скорости в соответствии с уравнениями (3.1), (3.6).

Угловые скорости, определяющие динамику движения антенны относительно мачты, были заданы центрированными случайными гауссовскими последовательностями с с.к.о. 10-2 рад/с, а динамику движения мачты относительно объекта, соответственно, как:

ωX=0.43cos2.45tрад/с,ωY=0.3cos2.7tрад/с

Определение истинного углового положения антенны осуществлялось путем интегрирования уравнений (3.9), (3.10) с учетом выбранных моделей углового движения.

Компоненты векторов помех измерения акселерометров Wai и ДУС Wdi моделировались центрированными случайными гауссовскими последовательностями с соответствующими с.к.о., приведенными ниже. Формирование реальных показаний ДУС осуществлялось путем наложения данных случайных гауссовских последовательностей на соответствующие векторы угловых скоростей.

На рис. 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 5 представлены графики изменения погрешностей оценивания параметров текущей ориентации антенны и самого объекта относительно рассмотренных выше СК. Обобщенный анализ результатов моделирования показал:

  1. Предложенный алгоритм оценки ориентации обеспечивает быструю сходимость и высокую устойчивость процесса оценивания. Погрешности оценивания углового положения антенны по окончании переходного процесса по всем углам ориентации не превысили 10-5 рад, объекта, соответственно, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 1.5·10-6 рад, что соответствует не только современным, но и перспективным, требованиям к системам ориентации.
  2. Увеличение погрешностей начальной оценки параметров η, λ, µ приводит к увеличению времени определения пространственной ориентации. Вариации частоты и амплитуды колебаний мачты в пределах 50 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 80% приводят к незначительному росту погрешностей оценивания (не более 6%), т.е. их влияние на точность ориентации оказывается существенно меньше, нежели погрешностей начальной оценки и с.к.о. шумов измерений.

На рис. 2 приведены погрешности оценивания ориентации ПСК1 относительно ИСК, выраженные вектором параметров Родрига MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Гамильтона µ. Погрешности их начальной оценки MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  при пересчете в углы Эйлера, были заданы в пределах 0.01 рад, с.к.о. помех измерения ДУС MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 5·10-8 рад/с, с.к.о. помех измерения акселерометров MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 10-4 м/с2.

 

Рис. 2. Погрешности оценивания ориентации ПСК1 относительно ИСК, выраженные вектором параметров Родрига MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfeqcLbqaqaaaaaaaaaWdbiaa=nbiaaa@39DA@ Гамильтона µ.

 

При данном уровне помех погрешности оценки компонентов вектора µ с 50-й секунды не превышали 10-4, что при расчете ориентации в углах Эйлера определяет ошибку оценивания в интервалах: для курсового угла: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 2.7·10-4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 2.8·10-4 рад, для угла тангажа: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 2.5·10-4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 2.5·10-4 рад, для угла крена: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 2.5·10-5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 2.5·10-5 рад.

На рис. 3 приведены погрешности оценивания ориентации ПСК2 относительно ОСК, выраженные вектором параметров Родрига MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Гамильтона η. Как видно из рис. 3, погрешности оценки компонентов вектора η после 200-й секунды не превышают 2.5·10-5 , что в углах Эйлера определяет ошибку оценивания в интервалах: для курсового угла: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 2.1·10-5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 2.6·10-5 рад, для угла тангажа: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 2.2·10-5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 2.4·10-5 рад, для угла крена: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 2.3·10-5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 2.4·10-5 рад.

 

Рис. 3. Погрешности оценивания ориентации ПСК2 относительно ОСК, выраженные вектором параметров Родрига MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfeqcLbqaqaaaaaaaaaWdbiaa=nbiaaa@39DA@ Гамильтона η.

 

На рис. 4 приведены погрешности оценивания ориентации ОСК относительно ПСК1, выраженные вектором параметров Родрига MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Гамильтона λ. В данном случае погрешности оценки вектора λ после 50-й секунды не превышают величины 2·10-5, что в углах Эйлера определяет ошибку оценивания в интервалах: для курсового угла: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 1.1·10-5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 1.6·10-5 рад, для угла тангажа: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 1.3·10-5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 1.7·10-5 рад, для угла крена: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 1.4·10-5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 1.8·10-5 рад.

 

Рис. 4. Погрешности оценивания ориентации ОСК относительно ПСК1, выраженные вектором параметров Родрига MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfeqcLbqaqaaaaaaaaaWdbiaa=nbiaaa@39DA@ Гамильтона λ.

 

Очевидно, что в целом полученные результаты удовлетворяют требованиям по точности определения ориентации антенн, предъявляемым не только к современным, но и перспективным БИСО. На рис. 5 показаны ошибки оценки координат ЦМ подвижного РТК. Как видно из полученных результатов, ошибки оценки долготы λ не превысили 4·10-7 рад, а ошибки определения широты φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 1.5·10-6 рад, что вполне соответствует требованиям, предъявляемым к современным системам навигации подвижных РТК.

 

Рис. 5. Ошибки оценки координат подвижного РТК

 

Заключение. В целом, результаты имитационного моделирования позволяют сделать вывод о том, что устойчивость предложенного алгоритма и его высокая точность обеспечивают возможность его использования для решения задачи оперативной ориентации мачтовых антенн подвижных РТК с использованием средне- и высокоточных БИСО без коррекции в течение достаточно длительного времени.

Приложение 1

B=B(λ,φ,t)= cos(λ+Ωt) 0 -sin(λ+Ωt) -sin(λ+Ωt)sinφ cosφ -cos(λ+Ωt)sinφ sin(λ+Ωt)cosφ sinφ cos(λ+Ωt)cosφ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOqaiabg2da9i aadkeacaGGOaGaeq4UdWMaaiilaiabeA8aQjaacYcacaWG0bGaaiyk aiabg2da9maaemaabaqbaeqabmWaaaqaaiaabogacaqGVbGaae4Cai aabIcacqaH7oaBcaqGRaGaeuyQdCLaaeiDaiaabMcaaeaacaaIWaaa baGaaeylaiaabohacaqGPbGaaeOBaiaabIcacqaH7oaBcaqGRaGaeu yQdCLaaeiDaiaabMcaaeaacaqGTaGaae4CaiaabMgacaqGUbGaaeik aiabeU7aSjaabUcacqqHPoWvcaqG0bGaaeykaiaabohacaqGPbGaae OBaiabeA8aQjaaykW7aeaaciGGJbGaai4BaiaacohacqaHgpGAcaaM c8oabaGaaeylaiaabogacaqGVbGaae4CaiaabIcacqaH7oaBcaqGRa GaeuyQdCLaaeiDaiaabMcacaqGZbGaaeyAaiaab6gacqaHgpGAaeaa caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl GacohacaGGPbGaaiOBaiaabIcacqaH7oaBcaqGRaGaeuyQdCLaaeiD aiaabMcaciGGJbGaai4BaiaacohacqaHgpGAcaaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7aeaacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlGacohaca GGPbGaaiOBaiabeA8aQjaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVdqaaiaabogacaqGVbGaae4CaiaabI cacqaH7oaBcaqGRaGaeuyQdCLaaeiDaiaabMcaciGGJbGaai4Baiaa cohacqaHgpGAaaaacaGLhWUaayjcSdaaaa@D1A5@

Приложение 2

D μ = 2 μ 1 2 +2 μ 2 2 1 2 μ 2 μ 3 + μ 1 μ 4 2 μ 2 μ 4 μ 1 μ 3 2 μ 2 μ 3 μ 1 μ 4 2 μ 1 2 +2 μ 3 2 1 2 μ 3 μ 4 + μ 1 μ 2 2 μ 2 μ 4 + μ 1 μ 3 2 μ 3 μ 4 μ 1 μ 2 2 μ 1 2 +2 μ 4 2 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiramaabmaaba GaeqiVd0gacaGLOaGaayzkaaGaeyypa0ZaaqWaaeaafaqabeWadaaa baGaaGOmaiabeY7aTnaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgU caRiaaikdacqaH8oqBdaqhaaWcbaGaaGOmaaqaaiaaikdaaaGccqGH sislcaaIXaaabaGaaGOmamaabmaabaGaeqiVd02aaSbaaSqaaiaaik daaeqaaOGaeqiVd02aaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaeqiV d02aaSbaaSqaaiaaigdaaeqaaOGaeqiVd02aaSbaaSqaaiaaisdaae qaaaGccaGLOaGaayzkaaaabaGaaGOmamaabmaabaGaeqiVd02aaSba aSqaaiaaikdaaeqaaOGaeqiVd02aaSbaaSqaaiaaisdaaeqaaOGaey OeI0IaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaeqiVd02aaSbaaSqa aiaaiodaaeqaaaGccaGLOaGaayzkaaaabaGaaGOmamaabmaabaGaeq iVd02aaSbaaSqaaiaaikdaaeqaaOGaeqiVd02aaSbaaSqaaiaaioda aeqaaOGaeyOeI0IaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaeqiVd0 2aaSbaaSqaaiaaisdaaeqaaaGccaGLOaGaayzkaaaabaGaaGOmaiab eY7aTnaaDaaaleaacaaIXaaabaGaaGOmaaaakiabgUcaRiaaikdacq aH8oqBdaqhaaWcbaGaaG4maaqaaiaaikdaaaGccqGHsislcaaIXaaa baGaaGOmamaabmaabaGaeqiVd02aaSbaaSqaaiaaiodaaeqaaOGaeq iVd02aaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaeqiVd02aaSbaaSqa aiaaigdaaeqaaOGaeqiVd02aaSbaaSqaaiaaikdaaeqaaaGccaGLOa GaayzkaaaabaGaaGOmamaabmaabaGaeqiVd02aaSbaaSqaaiaaikda aeqaaOGaeqiVd02aaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaeqiVd0 2aaSbaaSqaaiaaigdaaeqaaOGaeqiVd02aaSbaaSqaaiaaiodaaeqa aaGccaGLOaGaayzkaaaabaGaaGOmamaabmaabaGaeqiVd02aaSbaaS qaaiaaiodaaeqaaOGaeqiVd02aaSbaaSqaaiaaisdaaeqaaOGaeyOe I0IaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaeqiVd02aaSbaaSqaai aaikdaaeqaaaGccaGLOaGaayzkaaaabaGaaGOmaiabeY7aTnaaDaaa leaacaaIXaaabaGaaGOmaaaakiabgUcaRiaaikdacqaH8oqBdaqhaa WcbaGaaGinaaqaaiaaikdaaaGccqGHsislcaaIXaaaaaGaay5bSlaa wIa7aaaa@B319@

×

About the authors

S. V. Sokolov

Moscow Technical University of Communications and Informatics

Author for correspondence.
Email: s.v.s.888@yandex.ru
Russian Federation, Moscow

V. A. Pogorelov

Moscow Technical University of Communications and Informatics

Email: vadim-pva@narod.ru
Russian Federation, Moscow

I. V. Reshetnikova

Moscow Technical University of Communications and Informatics

Email: irina_reshetnikova@mail.ru
Russian Federation, Moscow

References

  1. Dardari D., Falleti E., Luise M. Methods of Satellite and Ground Positioning. Prospects for the Development of Signal Processing Technologies. Moscow: Technosphere, 2012. 528 p.
  2. Zaitsev D.V. Multi-Position Radar Systems. Methods and Algorithms of Information Processing in Conditions of Interference. Moscow: Radio Engng, 2007. 96 p.
  3. Konovalov A.A. Fundamentals of Trajectory Processing of Radar Information. St.Petersburg: SPbSETU “LETI” Pub., 2013. 164 p.
  4. Rapoport L., Barabanov I., Khvalkov A., Kutuzov A., Ashjaee J. Octopus: multi antennae GPS/GLONASS RTK system // ION GPS-2000, pp. 797–804.
  5. Gebre-Egziabher D., Hayward R.C., Powell J.D. Design of multi-sensor attitude determination systems // IEEE Trans. on Aerospace&Electronic Syst., 2004, vol. 40(2), pp. 627–649.
  6. Krasilshchikov M.N., Sebryakov G.G. Modern Information Technologies in Navigation Tasks and Guidance of Unmanned Maneuverable. Moscow: Fizmatlit, 2009. 556 p.
  7. Sokolov S.V., Pogorelov V.A. Measurements in information technologies nonlinear dynamic estimation of the orientation angles of a moving object from distributed satellite measurements // Meas. Tech., 2019, vol. 62, no. 3, pp. 30–36
  8. Lukasevich V.I., Pogorelov V.A., Sokolov S.V. Algorithm for estimating the rotation parameters of a distributed antenna using satellite measurements // Radio Engng., 2015, no. 6, pp. 122–132.
  9. Hirokawa R., Ebinuma T. A Low-cost tightly coupled GPS/INS for small UAVs augmented with multiple GPS antennas // Navigation: J. of the Inst. of Navigation, 2009, vol. 56, no. 1, pp. 35–44.
  10. Grewal M.S., Andrews A.P., Bartone C.G. Global Navigation Satellite Systems, Inertial Navigation, and Integration, Wiley, 2013.
  11. Tijing Cai, Qimeng Xu, Emelyantsev G.I., Stepanov A.P., Daijin Zhou, Shuaipeng Gao, Yang Liu, Junxiang Huang. A multimode GNSS/MIMU integrated orientation and navigation system // 26th St. Petersburg Int. Conf. on Integrated Navigation Syst., 2019.
  12. Emelyantsev G.I., Stepanov A.P., Blazhnov B.A. Initial alignment of SINS measuring unit and estimation of its errors using satellite phase measurements // Gyroscopy&Navigation, 2019, vol. 10, iss. 2, pp. 62–69.
  13. Kinkulkin I.E. Global Navigation Satellite Systems. Algorithms for the Functioning of Consumer Equipment. Moscow: Radio Engng., 2018. 328 p.
  14. Jahromi A.J., Broumandan A., Nielsen J., Lachapelle G. GPS vulnerability to spoofing threats and a review of anti-spoofing techniques // Int. J. of Navigation&Observation, 2012, vol. 2012, art. ID 127072, pp. 1–16.
  15. Baziar A.R., Moazedi M., Mosavi M.R. Analysis of single frequency GPS receiver under delay and combining spoofing algorithm // J. of Wireless Personal Commun., 2015, vol. 83, no. 3, pp. 1955–1970.
  16. Bhatti J., Humphreys T.E. Hostile control of ships via false GPS signals: demonstration and detection // J. of the Inst. of Navigation, 2017, vol. 64(1), pp. 51–66.
  17. Psiaki M.L., O’Hanlon B.W., Powell S.P., Bhatti J.A., Humphreys T.E., Schofield A. GNSS lies, GNSS truth: Spoofing detection with two-antenna differential carrier phase // GPS World, 2014, vol. 25, no. 11, pp. 36–44.
  18. Salychev O.S. Verified Approaches to Inertial Navigation. Moscow: BMSTU Pub., 2017. 368 p.
  19. Matveev V.V., Raspopov V.Ya. Instruments and Systems of Orientation, Stabilization and Navigation on MEMS Sensors. Tula: TulSU Pub., 2017. 225 p.
  20. Rosenberg I.N., Sokolov S.V., Umansky V.I., Pogorelov V.A. Theoretical Foundations of Close Integration of Inertial Satellite Navigation Systems. Moscow: Fizmatlit, 2018. 312 p.
  21. Emeliantsev G.I., Stepanov A.P. Integrated inertial-satellite orientation and navigation systems / ed. by Peshekhonov V.G. St. Petersburg: SSC RF JSC “Concern” Central Res. Inst. “Electropribor”, 2016. 394 p.
  22. Sokolov S.V., Pogorelov V.A., Shatalov A.B. Solving the autonomous initial navigation task for strapdown inertial navigation system on the perturbed basis using Rodriguez–Hamilton parameters // Rus. Aeronaut., 2019, vol. 62, no. 1, pp. 42–51.
  23. Chelnokov Yu.N. Quaternion Models and Methods of Dynamics, Navigation and Motion Control. Moscow: Fizmatlit, 2011. 560 p.
  24. Sinitsyn I.N. Kalman and Pugachev Filters. Moscow: Logos, 2006. 640 p.
  25. Ishlinskiy A.Y. Orientation, Gyroscopes and Inertial Navigation. Moscow: Nauka, 1976. 670 p.
  26. Miller B.M., Kolosov K.S. Robust estimation based on the method of least modules and the Kalman filter // Automat.&Telemech., 2020, no. 11, pp. 72–92.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Coordinate systems

Download (95KB)
3. Fig. 2. Errors in estimating the orientation of the PSC1 relative to the ISC, expressed by the Rodrigues-Hamilton parameter vector µ.

Download (105KB)
4. Fig. 3. Errors in estimating the orientation of the PSC2 relative to the OSC, expressed by the Rodrigues-Hamilton parameter vector η.

Download (80KB)
5. Fig. 4. Errors in estimating the orientation of the OSC relative to the PSC1, expressed by the Rodrigues-Hamilton parameter vector λ.

Download (70KB)
6. Fig. 5. Errors in estimating the coordinates of a mobile RTK

Download (104KB)
7. Supplement
Download (471KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».