ПЛАНАРНЫЙ ИНТЕРФЕРОМЕТР МАЙКЕЛЬСОНА НА ПОВЕРХНОСТНЫХ ПЛАЗМОНАХ ТЕРАГЕРЦЕВОГО ДИАПАЗОНА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлены оптическая схема и технические характеристики терагерцового планарного интерферометра Майкельсона на поверхностных плазмонах. Описана методика определения комплексного показателя преломления поверхностных плазмонов (\({{\tilde {n}}_{{\text{s}}}} = {{n}_{{\text{s}}}} + {\text{ }}i{{\kappa }_{{\text{s}}}}\)) по регистрируемым интерферограммам. Представлены результаты тестовых измерений на плоских поверхностях с золотым напылением, покрытых слоями ZnS толщиной от 0 до 3 мкм, с использованием мощного когерентного излучения Новосибирского лазера на свободных электронах на длине волны λ0 = 141 мкм. По результатам измерений найдено значение эффективной диэлектрической проницаемости поверхности напыленного золота, которое оказалось на порядок меньше, чем у кристаллического золота. Путем анализа энергетических потерь в плазмонном интерферометре выполнена оценка его динамического диапазона по мощности излучения (106–108), необходимого для измерений на образцах с разными \({{\tilde {n}}_{{\text{s}}}}\), а также предложены пути повышения отношения сигнал/шум путем оптимизации элементов оптической схемы и детектора.

Об авторах

В. В. Герасимов

Институт ядерной физики им. Г.И. Будкера СО РАН

Email: v.v.gerasimov3@gmail.com
Россия, 630090, Новосибирск, просп. Академика Лаврентьева, 11

А. К. Никитин

Научно-технологический центр уникального приборостроения РАН

Email: v.v.gerasimov3@gmail.com
Россия, 117342, Москва, ул. Бутлерова, 15

А. Г. Лемзяков

Институт ядерной физики им. Г.И. Будкера СО РАН

Автор, ответственный за переписку.
Email: v.v.gerasimov3@gmail.com
Россия, 630090, Новосибирск, просп. Академика Лаврентьева, 11

Список литературы

  1. Братман В.Л., Литвак А.Г., Суворов Е.В. // УФН. 2011. Т. 181. № 8. С. 867. https://doi.org/10.3367/UFNe.0181.201108f.0867
  2. Ghann W., Uddin J. Terahertz Spectroscopy: A Cutting-Edge Technology / Ed. by J. Uddin. London: IntechOpen, 2017.
  3. O’Hara J.F., Withayachumnankul W., Al-Naib I. // J. Infrared Millim. and Terahertz Waves. 2012. V. 33. № 3. P. 245. https://doi.org/10.1007/s10762-012-9878-x
  4. Hofmann T., Herzinger C.M., Boosalis A., Tiwald T.E., Woollam J.A., Schube M. // Rev. Sci. Instrum. 2010. V. 81. 023101. https://doi.org/10.1063/1.3297902
  5. Азаров И.А., Швец В.А., Прокопьев В.Ю., Дулин С.А., Рыхлицкий С.В., Чопорова Ю.Ю., Князев Б.А., Кручинин В.Н., Кручинина М.В. // ПТЭ. 2015. № 3. С. 71. https://doi.org/10.7868/S0032816215030039
  6. Naftaly M., Dudley R. // Appl. Opt. 2011. V. 50. № 9. P. 3201. https://doi.org/10.1364/AO.50.003201
  7. Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред / Под ред. В.М. Аграновича и Д.Л. Миллса. М.: Наука, 1985.
  8. Майер С.А. Плазмоника: теория и приложения. М., Ижевск: R&C Dynamics, 2011.
  9. Никитин А.К., Тищенко А.А. // Письма в ЖТФ. 1991. Т. 17(11). С. 76.
  10. Huang Y.H., Ho H.P., Wu S.Y., Kong S.K. // Advances in Optical Technologies. 2012. V. 2012. P. 471957. https://doi.org/10.1155/2012/908976
  11. Silin V.I., Voronov S.A., Yakovlev V.A., Zhizhin G.N. // Intern. J. Infrared and Millim. Waves. 1989. V. 10. № 1. P. 101. https://doi.org/10.1007/BF01009121
  12. Wang K., Mittleman D.M. // Phys. Rev. Lett. 2006. V. 96. P 157401. https://doi.org/10.1103/PhysRevLett.96.157401
  13. Gao Y., Xin Z., Gan Q., Cheng X., Bartoli F.J. // Opt. Express. 2013. V. 21. № 5. P. 5859. https://doi.org/10.1364/OE.21.005859
  14. Melentiev P.N., Kuzin A.A., Gritchenko A.S., Kalmykov A.S., Balykin V.I. // Optics Comm. 2017. V. 382. P. 509. https://doi.org/10.1016/j.optcom.2016.07.061
  15. Gan Q.Q., Gao Y., Bartoli F.J. // Optics Express. 2009. V. 17. № 23. P. 20747. https://doi.org/10.1364/OE.17.020747
  16. Ming Y., Wu Z., Wu H., Xu F., Lu Y. // IEEE Photonics Journal. 2012. V. 4 (1). P. 491. https://doi.org/10.1109/JPHOT.2012.2186562
  17. Schlesinger Z., Sievers A.J. // Applied Phys. Letters. 1980. V. 36. № 6. P. 409. https://doi.org/10.1063/1.91519
  18. Hanssen L.M., Riffe D.M., Sievers A.J. // Optics Letters. 1986. V. 11. № 12. P. 782. https://doi.org/10.1364/OL.11.000782
  19. Петров Ю.Е., Алиева Е.В., Жижин Г.Н., Яков-лев В.А. // ЖТФ. 1998. Т. 68. № 3. С. 64.
  20. Ma Y., Nguyen-Huu N., Zhou J., Maeda H., Wu Q., Eldlio M., Pistora J., Cada M. // IEEE Journal of Selected Topics in Quantum Electronics. 2017. V. 23. № 4. P. 4601607 https://doi.org/10.1109/JSTQE.2017.2660882
  21. Handbook of optical constants of solids. V. 1 / Ed by E.D. Palik. Academic Press, 2016.
  22. Pandey S., Gupta B., Chanana A., Nahata A. // Advances in Physics. 2016. V. 1. № 2. P. 176. https://doi.org/10.1080/23746149.2016.1165079
  23. Жижин Г.Н., Никитин А.К., Балашов А.А., Рыжова Т.А. Патент РФ на изобретение № 2318192 // Опубл. 27.02.2008. Бюл. № 6.
  24. Богомолов Г.Д., Жижин Г.Н., Кирьянов А.П., Никитин А.К. // Известия РАН. Сер. физ. 2009. Т. 73. № 4. С. 562.
  25. Никитин А.К., Князев Б.А., Герасимов В.В., Хасанов И.Ш. Патент РФ на изобретение № 2653590 // Опубл. 11.05.2018. Бюл. № 14.
  26. Жижин Г.Н., Кирьянов А.П., Никитин А.К. // Оптика и спектроскопия. 2012. Т. 112. № 4. С. 597.
  27. Gerasimov V.V., Knyazev B.A., Nikitin A.K., Nikitin V.V., Rijova T.A. // Discrete and Continuous Models and Applied Computational Science. 2013. № 2. P. 191. https://journals.rudn.ru/miph/article/view/8543
  28. Герасимов В.В., Князев Б.А., Никитин А.К. // Квантовая электроника. 2017. Т. 47. № 1. С. 65. https://doi.org/10.1070/QEL16178
  29. Gerasimov V.V., Nikitin A.K., Lemzyakov A.G., Azarov I.A., Milekhin I.A., Knyazev B.A., Bezus E.A., Kadomina E.A., Doskolovich L.L. // JOSA (B). 2020. V. 37. Is. 5. P. 1461. https://doi.org/10.1364/JOSAB.386331
  30. Никитин А.К., Хитров О.В. Патент РФ на изобретение № 2709600 // Опубл. 18.12.2019. Бюл. № 35.
  31. Gerasimov V.V., Nikitin A.K., Khitrov O.V., Lemzya-kov A.G. // 46-th Intern. Conf. on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). Chengdu, China (August 29–September 3) 2021. P. 1. https://doi.org/10.1109/IRMMW-THz50926.2021.9567134
  32. Shevchenko O.A., Vinokurov N.A., Arbuzov V.S., Chernov K.N., Davidyuk I.V., Deichuly O.I., Dementyev E.N., Dovzhenko B.A., Getmanov Ya.V., Gorbachev Ya.I., Knyazev B.A., Kolobanov E.I., Kondakov A.A., Kozak V.R., Kozyrev E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. P. 228. https://doi.org/10.3103/S1062873819020278
  33. Stegeman G.I., Wallis R.F., Maradudin A.A. // Optics Letters. 1983. V. 8. № 7. P. 386. https://doi.org/10.1364/OL.8.000386
  34. Kotelnikov I.A., Gerasimov V.V., Knyazev B.A. // Phys. Rev. (A). 2013. V. 87. Art. ID 023828. https://doi.org/10.1103/PhysRevA.87.023828
  35. Islam M.S., Nine J., Sultana J., Cruz A.L.S., Dinovitser A., Ng B.W., Ebendorff-Heidepriem H., Losic D., Abbott D. // IEEE Access. 2020. V. 8. P. 97204. https://doi.org/10.1109/ACCESS.2020.2996278
  36. Nazarov M., Garet F., Armand D., Shkurinov A., Cou-taz J.-L. // C. R. Physique. 2008. V. 9. P. 232. https://doi.org/10.1016/j.crhy.2008.01.004
  37. Князев Б.А., Никитин А.К. Патент РФ № 2547164 // Опубл. 10.04.2015. Бюл. № 10.
  38. Knyazev B.A., Gerasimov V.V., Nikitin A.K., Azarov I.A., Choporova Yu.Yu. // J. Opt. Soc. Am. (B). 2019. V. 36 P. 1684. https://doi.org/10.1364/JOSAB.36.001684
  39. Герасимов В.В., Князев Б.А., Никитин А.К. // Письма в ЖТФ. 2010. Т. 36. Вып. 21. С. 93.
  40. Zayats A.V., Smolyaninov I.I., Maradudin A.A. // Physics Reports. 2005. V. 408. P. 131. https://doi.org/10.1016/j.physrep.2004.11.001
  41. Gerasimov V.V., Knyazev B.A., Lemzyakov A.G., Nikitin A.K., Zhizhin G.N. // J. Opt. Soc. Am. (B). 2016. V. 33. P. 2196. https://doi.org/10.1364/JOSAB.33.002196
  42. Минин И.В., Минин О.В. // Вестник СГУГИТ. 2022. Т. 26. № 4. С. 160. https://doi.org/10.33764/2411-1759-2021-26-4-160-175
  43. http://www.tydexoptics.com/ru/products/thz_devices/ golay_cell/
  44. http://www.nzpp.ru/product/gotovye-izdeli/fotopriemnye-ustroystva/
  45. Паулиш А.Г., Дорожкин К.В., Сусляев, Гусаченко А.В., Морозов А.О., Пыргаева С.М. // Сб. трудов конференции “Актуальные проблемы радиофизики АПР 2019ˮ. Томск, 2019. С. 482. http://vital.lib.tsu.ru/vital /access/manager/Repository/vtls:000709334
  46. Зубов В.А. Методы измерения характеристик лазерного излучения. М.: Наука, 1973.
  47. Kubarev V.V., Kulipanov G.N., Kolobanov E.I., Matveenko A.N., Medvedev L.E., Ovchar V.K., Salikova T.V., Scheglov M.A., Serednyakov S.S., Vinokurov N.A. // Nucl. Instrum. and Methods. 2009. V. A603. P. 25. https://doi.org/10.1016/j.nima.2008.12.122
  48. Handbook: Physical Data / Ed. by I.S. Grigoryev and E.Z. Meilikhov. M.: Energoatomizdat, 1991.
  49. Mathar R.J. // J. Opt. A: Pure Appl. Opt. 2007. V. 9. P. 470. https://doi.org/10.1088/1464-4258/9/5/008
  50. Burke J.J., Stegeman G.I., Tamir T. // Phys. Rev. (B). 1986. V. 33. № 8. P. 5186. https://doi.org/10.1103/PhysRevB.33.5186
  51. Ordal M.A., Long L.L., Bell R.J., Bell S.E., Bell R.R., Alexander R.W., Ward C.A. // Appl. Opt. 1983. V. 22. P. 1099. https://doi.org/10.1364/AO.22.001099
  52. Jiu Zhi-Xian, Zuo Du-Luo, Miao Liang, Qi Chun-Chao, Cheng Zu-Hai // Chinese Phys. Lett. 2010. V. 27. P. 024211. https://doi.org/10.1088/0256-307X/27/2/024211
  53. Kozlov G., Volkov A. // In: Grüner G. Millimeter and Submillimeter Wave Spectroscopy of Solids. Topics in Applied Physics, V. 74. Berlin, Heidelberg: Springer, 2007. https://doi.org/10.1007/BFb0103420
  54. Idehara T., Sabchevski S.P., Glyavin M., Mitsudo S. // Appl. Sci. 2020. V. 10. P. 980. https://doi.org/10.3390/app10030980
  55. Wen B., Ban D. // Progress in Quantum Electronics. 2021. V. 80. Art. ID 100363. https://doi.org/10.1016/j.pquantelec.2021.100363
  56. Кубарев В.В. Дисс. … докт. физ.-мат. наук. Новосибирск: ИЯФ им. Г.И. Будкера. 2016.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

3.

Скачать (153KB)
4.

Скачать (77KB)

© В.В. Герасимов, А.К. Никитин, А.Г. Лемзяков, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».