MICROBIAL СOMMUNITIES OF SOIL MACROFAUNA AS A SOURCE OF ETHYLENE
- 作者: Yakushev A.V.1, Pozdnyakov L.A.1, Kudryashova E.B.2, Prisyajnaya N.V.2, Stepanov A.L.1
-
隶属关系:
- Lomonosov Moscow State University
- Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences
- 期: 编号 9 (2025)
- 页面: 1188-1197
- 栏目: БИОЛОГИЯ ПОЧВ
- URL: https://bakhtiniada.ru/0032-180X/article/view/308168
- DOI: https://doi.org/10.31857/S0032180X25090076
- EDN: https://elibrary.ru/jbobtk
- ID: 308168
如何引用文章
详细
作者简介
A. Yakushev
Lomonosov Moscow State University
Email: a_yakushev84@mail.ru
Moscow, 119991 Russia
L. Pozdnyakov
Lomonosov Moscow State UniversityMoscow, 119991 Russia
E. Kudryashova
Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of SciencesPushchino, 142290 Russia
N. Prisyajnaya
Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of SciencesPushchino, 142290 Russia
A. Stepanov
Lomonosov Moscow State UniversityMoscow, 119991 Russia
参考
- Белимов А.А., Сафронова В.И. АЦК деаминаза и растительно-микробные взаимодействия (обзор) // Сельскохозяйственная биология. 2011. № 3 С. 23–28.
- Arshad M., Frankenberger W.T. Biosynthesis of ethylee by Acremonium falciforme // Soil Biol. Biochem. 1989. V. 21. P. 633–638. https://doi.org/10.1016/0038-0717(89)90056-4
- Arshad M., Frankenberger W.T. Production and stability of ethylene in soil // Biol. Fertil. Soils. 1990. V. 10. P. 29–34.
- Arshad M., Frankenberger W.T. Ethylene: Agricultural Sources and Applications. N.Y.: Kluwer Academic, Plenum Publishers, 2002. 342 p.
- Ahemad M., Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. // J. King Saud University-Science. 2014. V. 26. P. 1–20. https://doi.org/10.1016/j.jksus.2013.05.001
- Billington D., Golding B., Primrose S. Biosynthesis of ethylene from methionine. Isolation of the putative intermediate 4-methylthio-2-oxobutanoate from culture fluids of bacteria and fungi // Biochem. J. 1979. V. 182. P. 827-836. https://doi.org/10.1042/bj1820827
- Chen Y., Bonkowski M., Shen Y., Griffiths B.S., Jiang Y., Wang X., Sun B. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants // Microbiome. 2020 V. 8. P. 1–17. https://doi.org/10.1186/s40168-019-0775-6
- Cristescu S., De Martinis D., Te Lintel Hekkert S., Parker D., Harren F. Ethylene production by Botrytis cinerea in vitro and in tomatoes // Appl. Environ. Microbiol. 2002. V. 68. P. 5342-5350. https://doi.org/10.1128/АЕМ.68.11.5342-5350.2002
- Chagué V., Danit L.V., Siewers V., Schulze-Gronover C., Tudzynski P., Tudzynski B., Sharon A. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions? // Mol. Plant. Microbe. Int. 2006. V. 19. P. 33-42. https://doi.org/ 10.1094/MPMI-19-0033
- Elsgaard L. Ethylene turn-over in soil, litter and sediment // Soil Biol. Biochem. 2001. V. 33. P. 249–252. https://doi.org/10.1016/S0038-0717(00)00122-X
- Fukuda H., Ogawa T., Tanase S. Ethylene production by microorganisms // Adv. Microb. Physiol. 1993. V. 35. P. 275-306. https://doi.org/10.1016/s0065-2911(08)60101-0
- Frankenberger W.T., Arshad M. Phytohormones in Soils: Microbial Production and Function. N.Y.: CRC Press, 1995. 520 P. https://doi.org/10.1201/9780367812256
- Hottiger T., Boller T. Ethylene biosynthesis in Fusarium oxysporum f. sp. tulipae proceeds from glutamate-2-oxoglutarate and requires oxygen and ferrous ions in vivo // Arch. Microbiol. 1991. V. 157. P. 18–22. https://doi.org/10.1007/BF00245329
- Graham J., Linderman R. Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum f. sp. pini, and by aseptically synthesized ectomycorrhizae and Fusarium-infected Douglas-fir roots // Can. J. Microbiol. 1980. V. 26. P. 1340–1347. https://doi.org/10.1139/m80-222
- Gamalero E., Glick B.R. Bacterial Modulation of Plant Ethylene Levels // Plant physiology. 2015. V. 169. P. 13–22. https://doi.org/10.1104/pp. 15.00284
- Hunt P.G., Campbell R.B., Sojka R.E., Parsons J.E., Flooding-induced soil and plant ethylene accumulation and water status response of field-grown tobacco // Plant Soil. 1981. V. 59. P. 427–439. https://doi.org/10.1007/BF02184547
- Hartmans S., de Bont J.A.M., Harder W., Micrоbial metabolism of short-chain unsaturated hydrocarbons // FEMS Microbiol. Rev. 1989. V. 5. P. 235–264. https://doi.org/10.1016/0168-6445(89)90034-x
- Ince J., Knowles C. Ethylene formation by cell-free extracts of Escherichia coli // Arch Microbiol. 1986. V. 146. P. 151–158. https://doi.org/10.1007/BF00402343
- Kepczynski J., Kepczynska E. Effect of ethylene on germination of fungal spores causing fruit rot. // Fruit Sci Rep. 1977. P. 31–35.
- Kolattukudy P.E., Kim Y., Li D., Liu Z.M., Rogers L. Early molecular communication between Colletotrichum gloeosporioides and its host // Host specificity, pathology and host pathogen interaction of Colletotrichum. MN: The American Phytopathol Soc. St. Paul., 2000. P. 87–79.
- Lang, V., Schneider, V., Puhlmann, H. Schengel A., · Seitz S., ·Schack-Kirchner H., Schaffer J., Maier M. Spotting ethylene in forest soils—What influences the occurrence of the phytohormone? // Biol. Fertil. Soils. 2023.V. 59 P. 953–972. https://doi.org/10.1007/s00374-023-01763-z
- Mansouri S., Bunch A. Bacterial ethylene synthesis from 2-oxo-4-thiobutyric acid and from methionine // J. Gen. Microbiol. 1989. V. 135. P. 2819-2827. https://doi.org/10.1099/00221287-135-11-2819.
- Nagahama K., Yoshino K., Matsuoka M., Sato M., Tanase S., Ogawa T., Fukuda H. Ethylene production by strains of the plant-pathogenic bacterium Pseudomonas syringae depends upon the presence of indigenous plasmids carrying homologous genes for the ethylene-forming enzyme // Microbiology. 1994. V. 140. P. 2309–2313. https://doi.org/10.1099/13500872-140-9-2309
- North J.A., Miller A.R., Wildenthal J.A., Young S.J., Tabita F.R. Microbial pathway for anaerobic 5′-methylthioadenosine metabolism coupled to ethylene formation // Proceedings of the National Academy of Sciences. 2017. V. 114. P. E10455–E10464. https://doi.org/10.1073/pnas.1711625114
- Pažout J., Pažoutová S. Ethylene is synthesized by vegetative mycelium in surface cultures of Penicillium cyclopium Westling // Can. J. Microbiol. 1989. V. 35. P. 384–387. https://doi.org/10.1139/m89-059
- Primose S.B., Dilworth M.J. Ethylene production by bacteria // J. Gen. Microbiol. 1975. V. 93. № 1. P. 177–181. https://doi.org/10.1099/00221287-93-1-177
- Ravanbakhsh M., Sasidharan R., Voesenek L.A.C.J., Kowalchukand G.A., Jousse A. Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences // Microbiome. 2018. V. 52. P. 1–10. https://doi.org/10.1186/s40168-018-0436-1
- Shekhawat K., Fröhlich K., García-Ramírez G.X.; Trapp M.A., Hirt H. Ethylene: A master regulator of plant–microbe interactions under abiotic stresses // Cells. 2023. V. 12. P. 1–15. https://doi.org/10.3390/cells12010031
- Tzeng D.D., DeVay J.E. Ethylene production and toxigenicity of methionine and its derivatives with riboflavin in cultures of Verticillium, Fusarium, and Collectotrichum species exposed to light // Physiol. Plant. 1984. V. 62. P. 545–552. https://doi.org/10.1111/j.1399-3054.1984.tb02797.x
- Weingart H., Völksch B. Ethylene production by Pseudomonas syringae pathovars in vitro and in planta // Appl. Environ. Microbiol. 1997. V. 63. P. 156–161. https://doi.org/10.1128/aem.63.1.156-161.1997
- Weingart H., Volksch B., Ullrich M. Comparison of ethylene production by Pseudomonas syringae and Ralstonia solanacearum // Phytopathol. 1999. V. 89. P. 360–365. https://doi.org/10.1094/PHYTO.1999.89.5.360
- Yang J., Giné-Bordonaba J., Vilanova L., Teixidó N., Usall J. An insight on the ethylene biosynthetic pathway of two major fruit postharvest pathogens with different host specificity: Penicillium digitatum and Penicillium expansum // Eur. J. Plant Pathology. 2017. V. 149. P. 575–585. https://doi.org/10.1007/s10658-017-1205-x
- Zechmeister-Boltenstern S., Smith K.A. Ethylene production and decomposition in soils // Biol. Fertil. Soils. 1998. V. 26. P. 354–361.
- Zhang Y., Du H., Xu F., Ding Y., Gui Y., Zhang J., Xu W. Root-bacteria associations boost rhizosheath formation in moderately dry soil through ethylene responses // Plant Physiol. 2020. V. 183. P. 780–792. https://doi.org/10.1104/pp. 19.01020
补充文件
