Impact of soil warming and drying on organic matter decomposition and accumulation and soil microbiome
- Authors: Yevdokimov I.V.1, Semenov M.V.2, Bykhovets S.S.1, Dudareva D.M.1, Kvitkina A.K.1, Krasnov G.S.3, Yusupov I.A.4
-
Affiliations:
- Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences
- Dokuchaev Soil Science Institute
- Engelhardt Institute of Molecular Biology
- Institute Botanic Garden, Ural Branch of the Russian Academy of Sciences
- Issue: No 9 (2025)
- Pages: 1135-1148
- Section: БИОЛОГИЯ ПОЧВ
- URL: https://bakhtiniada.ru/0032-180X/article/view/308164
- DOI: https://doi.org/10.31857/S0032180X25090032
- EDN: https://elibrary.ru/jbcbbl
- ID: 308164
Cite item
Abstract
One of the most informative methods for studying the effects of climate change on the productivity of terrestrial ecosystems is the implementation of in situ manipulative experiments. An alternative to costly and labor-intensive manipulative experiments involving soil warming and drying soil is the monitoring of test plots located near gas flares. The aim of the study was to determine the effect of long-term warming and drying on the kinetics of soil organic matter (SOM) decomposition, microbial biomass C content, and the structure of the soil microbial community at a monitoring research plot near gas flares located in the Khanty-Mansi Autonomous Area (Yugra). Besides, we estimated the stability of previously identified microbial activity indices in response to drying and warming after five years of measurements. A consistent trend of decreasing microbial biomass carbon content, water-soluble forms of nutrients, as well as basal respiration activity, was observed closer to the flare. However, after five years, the previously identified trend of increasing the kinetic rate constant of SOM decomposition (k1) decreasing the size of the labile SOM pool (A1) under intensified stress reversed. Changes in the k1 and A1 response were probably related to the accumulation of stable SOM fractions and the leveling of productivity and rhizodeposition activity of young pine trees, possibly indicating an “aging” process of the ecosystem. Shifts in the structure of the soil prokaryotic community near the flare were characterized by an increase in the relative abundance of the drought-resistant class Ktedonobacteria (phylum Chloroflexi) and a decrease in the relative abundance of the phyla Acidobacteria, Verruсomicrobia, and archea Thaumarchaeota. For the soil fungal community, increased warming and drying stress led to a rise in the relative abundance of the class Leotiomycetes (phylum Ascomycota) and a decrease in the representation of Agaricomycetes (phylum Basidiomycota). Thus, long-term soil warming and drying results in changes in the composition of the soil microbiome and a significant decrease in microbial biomass, labile carbon and its decomposition rate in the soils of forest ecosystems.
About the authors
I. V. Yevdokimov
Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences
Email: ilyaevd@yahoo.com
Pushchino, 142290 Russia
M. V. Semenov
Dokuchaev Soil Science Institute
Email: ilyaevd@yahoo.com
Moscow, 119017 Russia
S. S. Bykhovets
Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences
Email: ilyaevd@yahoo.com
Pushchino, 142290 Russia
D. M. Dudareva
Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences
Email: ilyaevd@yahoo.com
Pushchino, 142290 Russia
A. K. Kvitkina
Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences
Email: ilyaevd@yahoo.com
Pushchino, 142290 Russia
G. S. Krasnov
Engelhardt Institute of Molecular Biology
Email: ilyaevd@yahoo.com
Moscow, 119991 Russia
I. A. Yusupov
Institute Botanic Garden, Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: ilyaevd@yahoo.com
Yekaterinburg, 620144 Russia
References
- Благодатский С.А., Благодатская Е.В., Горбенко А.Ю., Паников Н.С. Регидратационный метод определения биомассы микроорганизмов в почве // Почвоведение. 1987. № 4. С. 64–71.
- Дударева Д.М., Квиткина А.К., Журавлева А.И., Юсупов И.А., Евдокимов И.В. Влияние факела попутного газа на почвенный покров через изменение активности почвенного микробного сообществ // Российский журнал прикладной экологии. 2019. № 1. С. 14–20.
- Евдокимов И.В., Юсупов И.А., Ларионова А.А., Быховец С.С., Глаголев М.В., Шавнин С.А. Тепловое воздействие факела попутного газа на биологическую активность почвы // Почвоведение. 2017. № 12. С. 1485–1493.
- Семенов В.М., Лебедева Т.Н., Зинякова Н.Б., Хромычкина Д.П., Соколов Д.А., Лопес Де Гереню В.О., Кравченко И.К., Ли Х., Семенов М.В. Зависимость разложения органического вещества почвы и растительных остатков от температуры и влажности в длительных инкубационных экспериментах // Почвоведение. 2022. № 7. С. 860–875.
- Шавнин С.А., Юсупов И.А., Артемьева Е.П., Голиков Д. Ю. Влияние повышения температуры среды на формирование наземной растительности вблизи газового факела // Лесной журнал. 2006. № 1. С. 21–28.
- Allison S.D., Treseder K.K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils // Global Change Biol. 2008. V. 14. P. 2898–2909.
- Anderson J.P.E., Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. P. 215–221.
- Apprill A., McNally S., Parsons R., Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton // Aquatic Microbial Ecol. 2015. V. 75. P. 129–137.
- Bani A., Piolia S., Ventura M., Panzacchi P., Borruso L., Tognetti R., Tonona G., Brusetti L. The role of microbial community in the decomposition of leaf litter and deadwood // Appl. Soil Ecol. 2018. V. 126. P. 75–84.
- Birch H.F. The effect of soil drying on humus decomposition and nitrogen availability // Plant and Soil. 1958. V. 10. P. 9–31. https://doi.org/10.1007/BF01343734
- Bird J.A., Kleber M., Torn M.S. 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition // Org. Geochem. 2008. V. 39. P. 465–477. https://doi.org/10.1016/j.orggeochem.2007.12.003
- Brookes P.C., Landman A., Pruden G., Jenkinson D.S. Chloroform fumigation and release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil // Soil Biol. Biochem. 1985. V. 17. P. 837–843.
- Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data // Nature Methods. 2016. V. 13. P. 581–583.
- Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Lozupone C.A., Turnbaugh P.J., Fierer N., Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample // Proceedings of the National Academy of Sciences. 2011. V. 108. Suppl. 1. P. 4516–4522
- Castro H.F., Classen A.T., Austin E.E., Norby R.J., Schadt C.W. Soil microbial community responses to multiple experimental climate change drivers // Appl. Environ. Microbiol. 2010. V. 76. P. 999–1007.
- Chen J., Luo Y., Xia J., Jiang L., Zhou X., Lu M., Liang J., Shi Z., Shelton S., Cao J. Stronger warming effects on microbial abundances in colder regions // Scientif. Rep. 2015. V. 5. P. 18032.
- d’Angelo E., Crutchfield J., Vandiviere M.J. Rapid, sensitive, microscale determination of phosphate in water and soil // Environ. Quality. 2001. V. 30. P. 2206–2209.
- Dmuchowski W., Baczewska-Dąbrowska A.H., Gworek B. Agronomy in the temperate zone and threats or mitigation from climate change: a review // Catena. 2022. V. 212. P. 106089.
- Fierer N., Schimel J.P., Holden P.A. Variations in microbial community composition through two soil depth profiles // Soil Biol. Biochem. 2003. V. 35. P. 167–176.
- Ihrmark K., Bödeker I. T., Cruz-Martinez K., Friberg H., Kubartova A., Schenck J., Strid Y., Stenlid J., Brandström-Durling M., Clemmensen K.E., Lindahl B.D. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities // FEMS Microbiol. Ecol. 2012. V. 82. P. 666–677.
- Kaiser E.-A., Müller T., Joergensen R.G., Insam H., Heinemezer O. Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter // Soil Biol. Biochem. 1992. V. 24. P. 675–683.
- Lear G., Dickie I., Banks J., Boyer S., Buckley H.L., Buckley T.R. et al. Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples // New Zealand J. Ecology. 2018. V. 42. P. 10–50A.
- Liu D., Keiblinger K.M., Leitner S., Wegner U., Zimmermann M., Fuchs S., Lassek C., Riedel K., Zechmeister-Boltenstern S. Response of microbial communities and their metabolic functions to drying–rewetting stress in a temperate forest soil // Microorganisms. 2019. V. 7. P. 129.
- Ma L., Ju Z., Fang Y., Vancov T., Gao Q., Wu D., Zhang A., Wang Y., Hu C., Wu W., Du Z. Soil warming and nitrogen addition facilitates lignin and microbial residues accrual in temperate agroecosystems // Soil Biol. Biochem. 2022. V. 170. P. 108693.
- Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads // EMBnet J. 2011. V. 17. P. 10–12.
- Mathew M.D. Nuclear energy: A pathway towards mitigation of global warming // Progress in Nuclear Energy. 2022. V. 143. P. 104080.
- McFarlane K.J., Cusack D.F., Hedgpeth A.L., Finstad K.M., Dietterich L.H., Nottingham A.T. Experimental warming and drying increase older carbon contributions to soil respiration in lowland tropical forest // Nature Commun. 2024. V. 15. P. 7084.
- Murali A., Bhargava A., Wright E.S. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences // Microbiome. 2018. V. 6. P. 1–14. https://doi.org/10.1186/s40168-018-0521-5
- Ning D., Yuan M., Wu L., Zhang Y., Guo X., Zhou X., Yang Y., Arkin A.P., Firestone M.K., Zhou J. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming // Nature Commun. 2020. V. 11. P. 4717.
- Ochoa-Hueso R., Collins, S.L., Delgado-Baquerizo M., Hamonts K., Pockman W.T., Sinsabaugh R.L., Smith M.D., Knapp A.K., Power S.A. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents // Global Change Biol. 2018. V. 24. P. 2818–827.
- Qu Q., Wang Z., Gan Q., Liu R., Xu H. Impact of drought on soil microbial biomass and extracellular enzyme activity // Frontiers Plant Sci. 2023. V. 14. P. 1221288. https://doi.org/10.3389/fpls.2023.1221288
- Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools // Nucleic Acids Res. 2012. V. 41. P. 590–596.
- Prăvălie R. Major perturbations in the Earth’s forest ecosystems. Possible implications for global warming // Earth Sci. Rev. 2018. V. 185. P. 544–571.
- Sardans J., Rivas-Ubach A., Penuelas J. The C : N : P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives // Perspectives in Plant Ecology, Evolution and Systematics. 2012. V. 14. P. 33–47.
- Sasaki T., Nambu M., Iwachido Y., Yoshihara Y., Batdelger G., Kinugasa T. Responses of plant productivity and carbon fluxes to short-term experimental manipulations of climate change and species loss in a Mongolian grassland // J. Arid Environ. 2022. V. 198. P. 104690.
- Sheik C.S., Beasley W.H., Elshahed M.S., Zhou X., Luo Y., Krumholz L.R. Effect of warming and drought on grassland microbial communities // The ISME J. 2011. V. 5. P. 1692–1700.
- Soltanieh M., Zohrabian A., Gholipour M.J., Kalnay E. A review of global gas flaring and venting and impact on the environment: Case study of Iran // Int. J. Greenhouse Gas Control. 2016. V. 49. P. 488–509.
- Sowerby A., Emmett B., Beier C., Tietema A., Peñuelas J., Estiarte M., Van Meeteren M.J.M., Hughes S., Freeman C. Microbial community changes in heathland soil communities along a geographical gradient: interaction with climate change manipulations // Soil Biol. Biochem. 2005. V. 37. P. 1805–1813.
- Uhlířová E., Elhottová D., Tříska J., Šantrůčková H. Physiology and microbial community structure in soil at extreme water content // Folia Microbiologica. 2005. V. 50. P. 161–166.
- UNITE Community Full UNITE+INSD Dataset for Fungi UNITE Community 2019. 18.11.2018.
- Vance E.D., Brookes P.C., Jenkinson D.S. An extraction method for measuring soil microbial biomass C // Soil Biol. Biochem. 1987. V. 19. P. 703–707.
- Wani O., Kumar S., Hussain N., Wani A.I.A., Babu S., Alam P., Rashid M., Popescu S.M., Mansoor S. Multi-scale processes influencing global carbon storage and land-carbon-climate nexus: A critical review // Pedosphere. 2022. V. 32. P. 250–267. https://doi.org/10.1016/j.pedsph.2022.07.002
- Xu H., Huang L., Chen J., Zhou H., Wan Y., Qu Q., Wang M., Xue S. Changes in soil microbial activity and their linkages with soil carbon under global warming // Catena. 2023. V. 232. P. 107419.
- Xu H., Huang L., Wang S. Effects of Warming on Change Rate of Soil Organic Carbon Content in Forest Soils // Forests. 2025. V. 16. P. 59. https://doi.org/10.3390/f16010059
- Xu X., Thornton P.E., Post W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems // Global Ecol. Biogeog. 2013. V. 22. P. 737–749.
- Yevdokimov I., Larionova A., Blagodatskaya E. Microbial immobilisation of phosphorus in soils exposed to drying-rewetting and freeze-thawing cycle // Biol. Ferti. Soils. 2016. V. 52. P. 685–696. https://doi.org/10.1007/s00374-016-1112-x
- Zhao J., Xie X., Jiang Y., Li J., Fu Q., Qiu Y., Fu X., Yao Z., Dai Z., Qiu Y. et al. Effects of simulated warming on soil microbial community diversity and composition across diverse ecosystems // Sci. Total Environ. 2024. V. 911. P. 168793.
- Zhou Z., Wang C., Luo Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality // Nature Commun. 2020. V. 11. P. 3072.
Supplementary files
