Anion Mobility and Cation Diffusion in Alkali Metal Borohydrides


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study presents a wide spectrum of experimental investigations of alkali borohydrides МВН4 (М = Li, Na, K, Rb, Cs) and complex hydrides with substituted anions Li(BH4)1– yIy, LiLa(BH4)3Cl, and Na2(BH4)(NH2) obtained by the nuclear magnetic resonance method, quasielastic neutron scattering spectroscopy, and X-ray diffraction analysis. Activation energies for reorientational motion of anions in alkali borohydrides have been systematized, and possible configurations and types of jumps of ВН4 groups have been discussed. It has been shown that the activation energy of reorientations of ВН4 groups change nonmonotonously with the growth of the cation radius. Substitution of halides and amides for anions in complex hydrides leads to an enhancement in the frequency of anion reorientations at low temperatures, a change in the translational diffusion of cations at the expense of a change in the crystalline structure, the appearance of vacancies in the lattice, and influence of the paddle-wheel effect. Interrelation between the type of anion reorientations, cation diffusion, and the crystal lattice has been demonstrated.

About the authors

A. V. Soloninin

Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: alex.soloninin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.