V.L. Ginzburg’s elliptic screw polarization modes in an optical medium with linear birefringence and twist: Determination of their parameters by the method of Jones matrices


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using the method of Jones matrices, we have calculated parameters of elliptic screw polarization modes (ESPMs). ESPM formalism has been proposed by V.L. Ginzburg for an optical medium with unperturbed linear birefringence and circular birefringence induced by twisting of the medium. The evolution of the polarization state of radiation (PSR) in relation to the length of the examined optical medium has been considered, which is important for twisted single-mode optical fibers and cholesteric liquid crystals. We have shown that the problem can be substantially simplified if the evolution of ESPMs is considered in a screw coordinate system comoving with the twist of the optical medium. In particular, we have shown that a curve on the Poincaré sphere mapping the evolution of the PSR for natural (normal) waves of the examined optical medium in the screw coordinate system degenerates into a point. For comparison, we have found natural waves of this medium in a fixed (laboratory) coordinate system and considered the evolution of their PSR, which is represented by a complex curve on the Poincaré sphere. Also, the evolution of the PSR of improper waves passed through the examined optical medium has been studied in both the fixed and the screw coordinate systems.

Sobre autores

G. Malykin

Institute of Applied Physics

Autor responsável pela correspondência
Email: malykin@ufp.appl.sci-nnov.ru
Rússia, Nizhny Novgorod, 603155

V. Pozdnyakova

Institute for Physics of Microstructures, Russian Academy of Sciences, Institute of Applied Physics

Email: malykin@ufp.appl.sci-nnov.ru
Rússia, Nizhny Novgorod, 603950

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017