Moored meteorological buoy as part of national green-house monitoring system in the Barents Sea
- 作者: Sharmar V.D.1, Tereschenkov V.P.1, Gavrikov A.V.1, Sinitzin A.V.1, Kravchishina M.D.1, Klyuvitkin A.A.1, Novigatsky A.N.1, Tilinina N.D.1, Pisarev S.V.1, Pisarev S.V.1, Gulev S.K.1
-
隶属关系:
- Shirsov Institute of Oceanology RAS
- 期: 卷 65, 编号 1 (2025)
- 页面: 181-186
- 栏目: Instruments and methods
- URL: https://bakhtiniada.ru/0030-1574/article/view/296297
- DOI: https://doi.org/10.31857/S0030157425010141
- EDN: https://elibrary.ru/DPATMI
- ID: 296297
如何引用文章
详细
Experimental deployment of surface meteorological moored buoy “Sea-Air-Wave Station” (SAWS) was performed during the expedition “European Arctic – 2024: a geologic annals of environmental and climate change” (96th cruise of RV “Akademik Mstislav Keldysh”) in the north-eastern part of the Barents Sea. Mooring design and instrumentation demonstrated validity of the meteorological buoy for usage as part of National green-house monitoring system.
作者简介
V. Sharmar
Shirsov Institute of Oceanology RAS
编辑信件的主要联系方式.
Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow
V. Tereschenkov
Shirsov Institute of Oceanology RAS
Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow
A. Gavrikov
Shirsov Institute of Oceanology RAS
Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow
A. Sinitzin
Shirsov Institute of Oceanology RAS
Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow
M. Kravchishina
Shirsov Institute of Oceanology RAS
Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow
A. Klyuvitkin
Shirsov Institute of Oceanology RAS
Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow
A. Novigatsky
Shirsov Institute of Oceanology RAS
Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow
N. Tilinina
Shirsov Institute of Oceanology RAS
Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow
S. Pisarev
Shirsov Institute of Oceanology RAS
Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow
S. Pisarev
Shirsov Institute of Oceanology RAS
Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow
S. Gulev
Shirsov Institute of Oceanology RAS
Email: sharmar@sail.msk.ru
俄罗斯联邦, Moscow
参考
- Клювиткин А.А., Кравчишина М.Д., Новигатский А.Н. и др. Первые данные о вертикальных потоках осадочного вещества и параметрах среды на северном сегменте хребта Мона, Норвежское море // Докл. РАН. Науки о Земле. 2023. Т. 513. № 1. С. 126–133. https://doi.org/10.31857/S2686739723601618
- Решетников М.Г. Климатическая политика в России: наука, технологии, экономика // Проблемы прогнозирования. 2023. № 6 (201). С. 6–10. https://doi.org/10.47711/0868-6351-201-6-10
- Gulev S.K., Latif M., Keenlyside N. et al. North Atlantic Ocean control on surface heat flux on multidecadal timescales // Nature. 2013. V. 499. P. 464–467. https://doi.org/10.1038/nature12268
- Gulev S.K., Thorne P.W., Ahn J. et al. Changing State of the Climate System // Climate Change 2022: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2022. P. 287–422. https://doi.org/10.1017/9781009157896.004
- Harden B.E., Renfrew I.A., Petersen G.N. Meteorological buoy observations from the central Iceland Sea // J. Geophys. Res. Atmos. 2015. V. 120. P. 3199–3208. https://doi.org/10.1002/2014JD022584
- Josey S.A., Grist J.P., Mecking J.V. et al. A clearer view of Southern Ocean air–sea interaction using surface heat flux asymmetry // Phil. Trans. R. Soc. A. 2023. 38120220067. http://doi.org/10.1098/rsta.2022.0067
- Lancaster O. et al. Comparative wave measurements at a wave energy site with a recently developed low-cost wave buoy (Spotter), ADCP, and pressure loggers //Jour. Atmos. Oceanic Technology. 2021. V. 38. № . 5. P. 1019–1033.
- Lind S., Ingvaldsen R.B., Furevik T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import // Nature Climate Change. 2018. V. 8(7). P. 634–639.
- Liss P.S., Slater P.G. Flux of gases across the Air-Sea interface // Nature. 1974. V. 247. P. 181–184. https://doi.org/10.1038/247181a0
- Ranganathan S., Weller R.A., Venkatesan R. et al. Performance of Moored Real-Time Ocean Observations During Cyclones in the Bay of Bengal // Marine Technology Society Journal. 2024. V. 58. № 3. P. 56–69. https://doi.org/10.4031/MTSJ.58.3.4
- Tilinina N., Gulev S.K., Bromwich D.H. New view of Arctic cyclone activity from the Arctic system reanalysis // Geophysical Research Letters. 2014. V. 41. № 5. P. 1766–1772.
- Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited // Limnol. Oceanogr. Methods. 2014. V. 12. P. 351–362. https://doi.org/10.4319/lom. 2014.12.351
- Zhang R., Zhou F., Wang X. et al. Cool skin effect and its impact on the computation of the latent heat flux in the South China Sea // Jour. Geoph. Res.: Oceans. 2021. V. 126(1). https://doi.org/10.1029/2020JC016498
补充文件
