Экстремальные колебания уровня Японского моря, вызванные прохождением тайфунов Майсак и Хайшен в сентябре 2020 г.

Обложка

Цитировать

Полный текст

Аннотация

Данное исследование посвящено экстремальным колебаниям уровня моря, полученным с мареографов на побережье Японского моря во время прохождения тайфунов Майсак и Хайшен в сентябре 2020 года. Основное внимание уделено штормовым нагонам, сейшам и инфрагравитационным волнам (ИГ-волнам), выделенным из временны́х рядов на основе гармонического и статистического анализов. В большинстве случаев штормовые нагоны, сформированные под совместным влиянием изменений атмосферного давления и сильного ветра, играли ключевую роль в экстремальном подъеме уровня моря. Для российского и японского побережий наиболее значительным по силе оказался первый тайфун, Майсак, а на юго-восточном берегу Корейского полуострова наибольшие колебания уровня моря были вызваны вторым циклоном, Хайшеном. Во всех пунктах прошедшие шторма стали причиной образования собственных колебаний в бухтах и заливах. Максимальный размах высокочастотных колебаний с периодами от двух до семи минут, вызванных ИГ-волнами, был зафиксирован в Преображении и составил 2 м. Наблюдаемые различия в колебаниях уровня моря обусловлены топографическими особенностями соответствующих пунктов побережья. Статистический анализ рядов атмосферного давления и скорости ветра, взятых с метеостанций и из реанализа ERA5, показал, что атмосферное давление воспроизводится реанализом с достаточно большой точностью, а скорость ветра на разных станциях имеет существенные расхождения, вызванные локальными особенностями конкретных районов.

Об авторах

Д. А. Смирнова

Московский государственный университет имени М.В. Ломоносова; Институт океанологии им. П.П. Ширшова РАН

Автор, ответственный за переписку.
Email: moscowdadas@gmail.com
Россия, Москва; Россия, Москва

И. П. Медведев

Институт океанологии им. П.П. Ширшова РАН

Email: moscowdadas@gmail.com
Россия, Москва

Список литературы

  1. Гидрометеорология и гидрохимия морей. Том 08. Японское море. Выпуск 1. Гидрометеорологические условия. Справочник. Проект Моря. Санкт-Петербург: Гидрометеоиздат, 2003. 397 с.
  2. Мамедов Э.С., Павлов Н.И. Тайфуны. Л.: Гидрометеоиздат, 1975. 144 с.
  3. Портал РП5: https://rp5.ru (Дата обращения: 15.04.2021).
  4. Портал NOAA Historical Hurricane Tracks: https:// coast.noaa.gov/hurricanes/#map=4/32/-80 (Дата обращения: 02.12.2020).
  5. Рабинович А.Б. Длинные гравитационные волны в океане: захват, резонанс, излучение. СПб: Гидрометеоиздат, 1993. 326 с.
  6. Российская служба предупреждения о цунами: http://www.rtws.ru/ (Дата обращения: 17.09.2020)
  7. Смирнов С.В. О сейшевых колебаниях в заливе Находка // Метеорология и гидрология. 2016. № 1. С. 78–85.
  8. Chupin V., Dolgikh G., Dolgikh S., Smirnov S. Study of free oscillations of bays in the northwestern part of Posyet Bay // Journal of Marine Science and Engineering. 2022. V. 10. № 8. P. 1005. https://doi.org/10.3390/jmse10081005
  9. Flanders Marine Institute (VLIZ); Intergovernmental Oceanographic Commission (IOC) (2022): Sea level station monitoring facility: http://www.ioc-sealevelmonitoring.org/map.php (Дата обращения: 17.09.2020). https://doi.org/10.14284/482
  10. Ha K.M. Predicting typhoon tracks around Korea // Natural Hazards. 2022. V. 106. P. 1639–1672. https://doi.org/10.1007/s11069-022-05335-6
  11. Heidarzadeh M., Rabinovich A.B. Combined hazard of typhoon-generated meteorological tsunamis and storm surges along the coast of Japan // Natural Hazards. 2021. V. 106. P. 1639–1672. https://doi.org/10.1007/s11069-020-04448-0
  12. Hersbach H., Bell B., Berrisford P. et al. The ERA5 global reanalysis // Quarterly Journal of the Royal Meteorological Society. 2020. V. 146. № 730. P. 1999–2049. https://doi.org/10.1002/qj.3803
  13. Hibiya T., Kajiura K. Origin of the Abiki phenomenon (a kind of seiche) in Nagasaki Bay // J. Oceanogr. Soc. Japan. 1982. V. 38. P. 172–182.
  14. Kim H.J., Kim D.B., Jeong O.J., Moon Y.S. The moving speed of typhoons of recent years (2018-2020) and changes in total precipitable water vapor around the Korean Peninsula // Journal of the Korean Earth Science Society. 2021. V. 42. № 3. P. 264–277. https://doi.org/10.5467/JKESS.2021.42.3.264
  15. Lin L.C., Wu C.H. Unexpected meteotsunamis prior to Typhoon Wipha and Typhoon Neoguri // Natural Hazards. 2021. V. 106. P. 1673–1686. https://doi.org/10.1007/s11069-020-04313-0
  16. MacMahan J. Low-frequency seiche in a large bay // J. Phys. Oceanogr. 2015. V. 45, P. 716–723. https://doi.org/10.1175/JPO-D-14-0169.1
  17. Medvedev I.P., Rabinovich A.B., Šepić J. Destructive coastal sea level oscillations generated by Typhoon Maysak in the Sea of Japan in September 2020 // Scientific Reports. 2022. V. 12. № 8463. https://doi.org/10.1038/s41598-022-12189-2
  18. Monserrat S., Vilibić I., Rabinovich A.B. Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band // Natural Hazards and Earth System Sciences. 2006. V. 6. № 6. P. 1035–1051. https://doi.org/10.5194/nhess-6-1035-2006
  19. Munk W.H. Surf beats // EOS, Transactions American Geophysical Union. 1949. V. 30. № 6. P. 849–854. https://doi.org/10.1029/TR030i006p00849
  20. Rabinovich A.B. Seiches and harbor oscillations. In: Handbook of Coastal and Ocean Engineering / Ed. Kim. Y.C. Chapter 9. World Scientific Publ., Singapore, 2009. P. 193–236.
  21. Smirnov S.V. Yaroshchuk I.O., Shvyrev A.N. et al. Resonant oscillations in the western part of the Peter the Great Gulf in the Sea of Japan // Natural Hazards. 2021. V. 106. № 2. P. 1729–1745. https://doi.org/10.1007/s11069-021-04561-8
  22. Yuk J.H., Kang J.S., Myung H. Applicability study of a global numerical weather prediction model MPAS to storm surges and waves in the south coast of Korea // Atmosphere. 2022. V. 13. № 4. P. 591. https://doi.org/10.3390/atmos13040591
  23. Zhu D., Zhi X., Wang N. et al. Impacts of Changbai Mountain topography on the extreme precipitation from super typhoon Maysak // Front. Environ. Sci. V. 9. № 818402. https://doi.org/10.3389/fenvs.2021.818402

Дополнительные файлы


© Д.А. Смирнова, И.П. Медведев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».