КАТАЛИТИЧЕСКАЯ АКТИВНОСТЬ НЕФТЯНЫХ МЕТАЛЛОПОРФИРИНОВ В ПРОЦЕССАХ ОКИСЛЕНИЯ АЛКЕНОВ И СПИРТОВ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Впервые получены спектрально чистые деметаллированные порфирины непосредственно из асфальтенов нефти. Из них синтезированы комплексы с различными металлами: кобальтом, никелем, медью, цинком с выходами  и охарактеризованы методами УФ-видимой спектроскопии, времяпролетной масс-спектрометрии с матрично-активированной лазерной десорбцией/ионизацией (МАЛДИ), ИК-спектроскопии. Показана возможность использования металлокомплексов, полученных из нефтяных порфиринов, в реакциях каталитического эпоксидирования алкенов и окисления спиртов. В присутствии нефтяных порфиринов кобальта происходит -ная конверсия циклогексена и 1 -октена с образованием 1,2 -эпоксициклогексана и 1,2 -эпоксиоктана соответственно, а окисление бензилового и бутилового спиртов протекает с конверсией  и  с образованием бензальдегида и бутановой кислоты соответственно. Нефтяные порфирины меди, никеля и цинка не проявили каталитическую активность в этих процессах.

Полный текст

Доступ закрыт

Об авторах

Дамир Ильдарович Тазеев

Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук

Автор, ответственный за переписку.
Email: tazeevexc4@yahoo.com
ORCID iD: 0000-0002-7074-6508
SPIN-код: 8875-2280

кандидат химических наук, младший научный сотрудник лаборатории Переработки нефти и природных битумов

Россия, 420088, Россия, Казань, ул. Арбузова, 8

Николай Александрович Миронов

Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук

Email: n_mir@mail.ru
ORCID iD: 0000-0003-1519-6600
SPIN-код: 7668-7927

кандидат химических наук, научный сотрудник лаборатории Переработки нефти и природных битумов

Россия, 420088, Россия, Казань, ул. Арбузова, 8

Дмитрий Валерьевич Милордов

Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук

Email: milordoff@ya.ru
ORCID iD: 0000-0003-2665-526X

кандидат химических наук, научный сотрудник лаборатории Переработки нефти и природных битумов

Россия, 420088, Россия, Казань, ул. Арбузова, 8

Эльвира Габидулловна Тазеева

Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук

Email: tazeeva_elvira@mail.ru
ORCID iD: 0000-0002-6419-708X

младший научный сотрудник лаборатории Переработки нефти и природных битумов

Россия, 420088, Россия, Казань, ул. Арбузова, 8

Светлана Габидуллиновна Якубова

Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук

Email: yakubovasg@mail.ru
ORCID iD: 0000-0002-2845-2573

кандидат химических наук, старший научный сотрудник лаборатории Переработки нефти и природных битумов

Россия, 420088, Россия, Казань, ул. Арбузова, 8

Махмут Ренатович Якубов

Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук

Email: yakubovmr@mail.ru
ORCID iD: 0000-0003-0504-5569

доктор химических наук, доцент, заместитель руководителя института, главный научный сотрудник, заведующий лаборатории Переработки нефти и природных битумов

Россия, 420088, Россия, Казань, ул. Арбузова, 8

Список литературы

  1. Che C.M., Huang J.S. Metalloporphyrin-based oxidation systems: From biomimetic reactions to application in organic synthesis. Chem. Commun. 2009. №. 27. P. 3996-4015. https://doi.org/10.1039/b901221d
  2. Hu X., Huang Z, Gu G., Wang L., Chen B. Heterogeneous catalysis of the air oxidation of thiols by the cobalt porphyrin intercalated into a phosphatoantimonic acid host. J. Mol. Catal. A Chem. 1998. V. 132. P. 171-179. https://doi.org/10.1016/S1381-1169(97)00240-9
  3. Hassanein M., Gerges S., Abdo M., El-Khalafy S. Catalytic activity and stability of anionic and cationic water soluble cobalt(II) tetraarylporphyrin complexes in the oxidation of 2-mercaptoethanol by molecular oxygen. J. Mol. Catal. A Chem. 2005. V. 240. P. 22-26. https://doi.org/10.1016/j.molcata.2005.05.043
  4. Ehsani M.R., Safadoost A.R., Avazzadeh R., Barkhordari A. Kinetic study of ethyl mercaptan oxidation in presence of Merox catalyst. Iran. J. Chem. Chem. Eng. 2013. V. 32. P. 71-80.
  5. Payamifar S., Abdouss M., Poursattar A. An overview of porphyrin-based catalysts for sulfide oxidation reactions. Polyhedron. 2025. V. 269. 117389. https://doi.org/10.1016/j.poly.2025.117389
  6. Raveena R., Bajaj A., Tripathi A., Kumari P. Recent catalytic applications of porphyrin and phthalocyanine-based nanomaterials in organic transformations, SynOpen, 2025. https://doi.org/10.1055/a-2541-6382
  7. Nhi B.D., Akhmadullin R.M., Akhmadullina A.G., Samuilov Y.D., Aghajanian S.I. Polymeric heterogeneous catalysts of transition-metal oxides: surface characterization, physicomechanical properties, and catalytic activity. ChemPhysChem. 2013. V. 14. P. 4149-4157. https://doi.org/10.1002/cphc.201300733
  8. Estrada-Montano A.S., Gomez-Benitez V., Camacho-Davila A., Rivera E, Morales-Morales D., Zaragoza-Galan G. Metalloporphyrins: Ideal catalysts for olefin epoxidations. Journal of Porphyrins and Phthalocyanines. 2022. V. 26. № 12. P. 821-836. https://doi.org/10.1142/s1088424622300051
  9. Che C.M., Lo V.K.Y., Zhou C.Y., Huang J.S. Selective functionalisation of saturated C-H bonds with metalloporphyrin catalysts. Chem. Soc. Rev. 2011. V. 40. P. 1950-1975. https://doi.org/10.1039/c0cs00142b
  10. Costas M. Selective C-H oxidation catalysed by metalloporphyrins. Coord. Chem. Rev. 2011. V. 255. P. 2912-2932. https://doi.org/10.1016/j.ccr.2011.06.026
  11. Le Maux P., Srour H.F., Simonneaux G. Enantioselective water-soluble iron-porphyrin-catalysed epoxidation with aqueous hydrogen peroxide and hydroxylation with iodobenzene diacetate. Tetrahedron. 2012. V. 68. P. 5824-5828. https://doi.org/10.1016/j.tet.2012.05.014
  12. Haber J., Matachowski L., Pamin K., Poltowicz J. The effect of peripheral substituents in metalloporphyrins on their catalytic activity in Lyons system. J. Mol. Catal. A Chem. 2003. V. 198. P. 215-221. https://doi.org/10.1016/S1381-1169(02)00688-X
  13. Guo, C.C.; Liu, X.Q.; Liu, Q.; Liu, Y.; Chu, M.F.; Lin, W.Y. First industrial-scale biomimetic oxidation of hydrocarbon with air over metalloporphyrins as cytochrome P-450 monooxygenase model and its mechanistic studies. J. Porphyr. Phthalocyanines. 2009. V. 13. P. 1250-1254. https://doi.org/10.1142/S1088424609001613
  14. Nakagaki S., Ferreira G., Ucoski G., Dias de Freitas Castro K. Chemical reactions catalysed by metalloporphyrin-based metal-organic frameworks. Molecules. 2013. V. 18. P. 7279-7308. https://doi.org/10.3390/molecules18067279
  15. Barona-Castaño J.C., Carmona-Vargas C.C., Brocksom T.J., de Oliveira K.T. Porphyrins as catalysts in scalable organic reactions. Molecules. 2016. V. 21. № 3. P. 310. https://doi.org/10.3390/molecules21030310
  16. Zhang J.L., Che C.M. Soluble polymer-supported ruthenium porphyrin catalysts for epoxidation, cyclopropanation, and aziridination of alkenes. Organic Letters. 2002. V. 4. № 11. P. 1911-1914. https://doi.org/10.1021/ol0259138
  17. Yu X.Q., Huang J.S., Yu W.Y., Che C.M. Polymer-supported ruthenium porphyrins: versatile and robust epoxidation catalysts with unusual selectivity. J. Am. Chem. Soc. 2000. V. 122. P. 5337-5342. https://doi.org/10.1021/ja000461k
  18. Zhang J.L., Zhou H.B., Huang J.S., Che C.M. Dendritic ruthenium porphyrins: A new class of highly selective catalysts for alkene epoxidation and cyclopropanation. Chem. Eur. J. 2002. V. 8. P. 1554-1562. https://doi.org/10.1002/1521-3765(20020402)8:7<1554::AID-CHEM1554>3.0.CO;2-R
  19. Zhang J.L., Che C.M. Dichlororuthenium(IV) complex of meso‐tetrakis(2,6‐dichlorophenyl)porphyrin: active and robust catalyst for highly selective oxidation of arenes, unsaturated steroids, and electron‐deficient alkenes by using 2,6‐dichloropyridine N‐oxide. Chem. Eur. J. 2005. V. 11. P. 3899-3914. https://doi.org/10.1002/chem.200401008
  20. Nam W., Oh S., Sun Y.J., Kim J., Kim W., Woo S.K. Factors affecting the catalytic epoxidation of olefins by iron porphyrin complexes and H2O2 in protic solvents. J. Org. Chem. 2003. V. 68. P. 7903-7906. https://doi.org/10.1021/jo034493c
  21. Collman J., Zhang X., Lee V., Uffelman E., Brauman J. Regioselective and enantioselective epoxidation catalysed by metalloporphyrins. Science. 1993. V. 261. P. 1404-1411. https://doi.org/10.1126/science.8367724
  22. Groves J.T., Myers R.S. Catalytic asymmetric epoxidations with chiral iron porphyrins. J. Am. Chem. Soc. 1983. V. 105. P. 5791-5796. https://doi.org/10.1021/ja00356a016
  23. Rose E., Andrioletti B., Zrig S., Quelquejeu-Etheve M. Enantioselective epoxidation of olefins with chiral metalloporphyrin catalysts. Chem. Soc. Rev. 2005. V. 34. P. 573-583. https://doi.org/10.1039/b405679p
  24. Stephenson N.A., Bell A.T. Mechanistic insights into iron porphyrin-catalysed olefin epoxidation by hydrogen peroxide: Factors controlling activity and selectivity. J. Mol. Catal. A Chem. 2007. V. 275. P. 54-62. https://doi.org/10.1016/j.molcata.2007.05.005
  25. Cunningham I.D., Danks T.N., Hay J.N., Hamerton I., Gunathilagan S. Evidence for parallel destructive, and competitive epoxidation and dismutation pathways in metalloporphyrin-catalysed alkene oxidation by hydrogen peroxide. Tetrahedron. 2001. V. 57. P. 6847-6853. https://doi.org/10.1016/S0040-4020(01)00639-1
  26. Mironov N.A., Milordov D.V., Abilova G.R., Yakubova S.G., Yakubov, M.R. Methods for studying petroleum porphyrins (review). Petrol. Chem. 2019. V. 59. № 10. P. 1077-1091. https://doi.org/10.1134/S0965544119100074
  27. Zhao X., Xu C., Shi Q. Porphyrins in Heavy Petroleums: A Review. In Structure and modeling of complex petroleum mixtures. Structure and Bonding. Springer. 2015. V. 168. P. 39-70. https://doi.org/10.1007/430_2015_189
  28. McKay Rytting B., Singh I.D., Kilpatrick P.K., Harper M.R., Mennito A.S., Zhang Y. Ultrahigh-purity vanadyl petroporphyrins. Energy & Fuels. 2018. V. 32. № 5. P. 5711-5724. https://doi.org/10.1021/acs.energyfuels.7b03358
  29. Tazeev D., Musin L., Mironov N., Milordov D., Tazeeva E., Yakubova S., Yakubov M. Complexes of transition metals with petroleum porphyrin ligands: preparation and evaluation of catalytic ability. Сatalysts. 2021. V. 11. P. 1506. https://doi.org/10.3390/catal11121506
  30. Milordov D.V., Usmanova G.Sh., Yakubov M.R., Yakubova S.G., Romanov G.V. Comparative analysis of extractive methods of porphyrin separation from heavy oil asphatenes. Chemistry and Technology of Fuels and Oils. 2013. V. 49 № 3. P. 29-32. https://doi.org/10.1007/s10553-013-0435-7
  31. Yakubov M.R., Milordov D.V., Yakubova S.G., Borisov D.N., Gryaznov P.I., Usmanova G.Sh. Sulfuric acid assisted extraction and fractionation of porphyrins from heavy petroleum residuals with a high content of vanadium and nickel. Petroleum Science and Technology. 2015. V. 33 № 9. P. 992-998. https://doi.org/10.1080/10916466.2015.1030078

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок 1. Эпоксидирование алкенов, катализируемое металлопорфиринами

3. Рисунок 2. Окисление спиртов, катализируемое металлопорфиринами

Скачать (11KB)
4. Рисунок 3. Спектры электронного поглощения деметаллированных нефтяных порфиринов (сплошная линия) и синтетического октаэтилпорфирина (пунктирная линия) в хлороформе

Скачать (17KB)
5. Рисунок 4. MALDI-TOF масс-спектры нефтяных металлопорфиринов.

Скачать (61KB)
6. Рисунок 5. ИК-спектры синтезированных нефтяных металлопорфиринов.

Скачать (29KB)
7. Таблица 1

Скачать (15KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».