КАТАЛИТИЧЕСКАЯ АКТИВНОСТЬ НЕФТЯНЫХ МЕТАЛЛОПОРФИРИНОВ В ПРОЦЕССАХ ОКИСЛЕНИЯ АЛКЕНОВ И СПИРТОВ
- Авторы: Тазеев Д.И.1, Миронов Н.А.1, Милордов Д.В.1, Тазеева Э.Г.1, Якубова С.Г.1, Якубов М.Р.1
-
Учреждения:
- Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук
- Выпуск: Том 65, № 3 (2025)
- Страницы: 173-181
- Раздел: Статьи
- URL: https://bakhtiniada.ru/0028-2421/article/view/287016
- DOI: https://doi.org/10.31857/S0028242125030016
- EDN: https://elibrary.ru/LCTYOA
- ID: 287016
Цитировать
Аннотация
Впервые получены спектрально чистые деметаллированные порфирины непосредственно из асфальтенов нефти. Из них синтезированы комплексы с различными металлами: кобальтом, никелем, медью, цинком с выходами и охарактеризованы методами УФ-видимой спектроскопии, времяпролетной масс-спектрометрии с матрично-активированной лазерной десорбцией/ионизацией (МАЛДИ), ИК-спектроскопии. Показана возможность использования металлокомплексов, полученных из нефтяных порфиринов, в реакциях каталитического эпоксидирования алкенов и окисления спиртов. В присутствии нефтяных порфиринов кобальта происходит -ная конверсия циклогексена и 1 -октена с образованием 1,2 -эпоксициклогексана и 1,2 -эпоксиоктана соответственно, а окисление бензилового и бутилового спиртов протекает с конверсией и с образованием бензальдегида и бутановой кислоты соответственно. Нефтяные порфирины меди, никеля и цинка не проявили каталитическую активность в этих процессах.
Полный текст

Об авторах
Дамир Ильдарович Тазеев
Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук
Автор, ответственный за переписку.
Email: tazeevexc4@yahoo.com
ORCID iD: 0000-0002-7074-6508
SPIN-код: 8875-2280
кандидат химических наук, младший научный сотрудник лаборатории Переработки нефти и природных битумов
Россия, 420088, Россия, Казань, ул. Арбузова, 8Николай Александрович Миронов
Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук
Email: n_mir@mail.ru
ORCID iD: 0000-0003-1519-6600
SPIN-код: 7668-7927
кандидат химических наук, научный сотрудник лаборатории Переработки нефти и природных битумов
Россия, 420088, Россия, Казань, ул. Арбузова, 8Дмитрий Валерьевич Милордов
Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук
Email: milordoff@ya.ru
ORCID iD: 0000-0003-2665-526X
кандидат химических наук, научный сотрудник лаборатории Переработки нефти и природных битумов
Россия, 420088, Россия, Казань, ул. Арбузова, 8Эльвира Габидулловна Тазеева
Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук
Email: tazeeva_elvira@mail.ru
ORCID iD: 0000-0002-6419-708X
младший научный сотрудник лаборатории Переработки нефти и природных битумов
Россия, 420088, Россия, Казань, ул. Арбузова, 8Светлана Габидуллиновна Якубова
Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук
Email: yakubovasg@mail.ru
ORCID iD: 0000-0002-2845-2573
кандидат химических наук, старший научный сотрудник лаборатории Переработки нефти и природных битумов
Россия, 420088, Россия, Казань, ул. Арбузова, 8Махмут Ренатович Якубов
Институт органической и физической химии им. А.Е. Арбузова – обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук
Email: yakubovmr@mail.ru
ORCID iD: 0000-0003-0504-5569
доктор химических наук, доцент, заместитель руководителя института, главный научный сотрудник, заведующий лаборатории Переработки нефти и природных битумов
Россия, 420088, Россия, Казань, ул. Арбузова, 8Список литературы
- Che C.M., Huang J.S. Metalloporphyrin-based oxidation systems: From biomimetic reactions to application in organic synthesis. Chem. Commun. 2009. №. 27. P. 3996-4015. https://doi.org/10.1039/b901221d
- Hu X., Huang Z, Gu G., Wang L., Chen B. Heterogeneous catalysis of the air oxidation of thiols by the cobalt porphyrin intercalated into a phosphatoantimonic acid host. J. Mol. Catal. A Chem. 1998. V. 132. P. 171-179. https://doi.org/10.1016/S1381-1169(97)00240-9
- Hassanein M., Gerges S., Abdo M., El-Khalafy S. Catalytic activity and stability of anionic and cationic water soluble cobalt(II) tetraarylporphyrin complexes in the oxidation of 2-mercaptoethanol by molecular oxygen. J. Mol. Catal. A Chem. 2005. V. 240. P. 22-26. https://doi.org/10.1016/j.molcata.2005.05.043
- Ehsani M.R., Safadoost A.R., Avazzadeh R., Barkhordari A. Kinetic study of ethyl mercaptan oxidation in presence of Merox catalyst. Iran. J. Chem. Chem. Eng. 2013. V. 32. P. 71-80.
- Payamifar S., Abdouss M., Poursattar A. An overview of porphyrin-based catalysts for sulfide oxidation reactions. Polyhedron. 2025. V. 269. 117389. https://doi.org/10.1016/j.poly.2025.117389
- Raveena R., Bajaj A., Tripathi A., Kumari P. Recent catalytic applications of porphyrin and phthalocyanine-based nanomaterials in organic transformations, SynOpen, 2025. https://doi.org/10.1055/a-2541-6382
- Nhi B.D., Akhmadullin R.M., Akhmadullina A.G., Samuilov Y.D., Aghajanian S.I. Polymeric heterogeneous catalysts of transition-metal oxides: surface characterization, physicomechanical properties, and catalytic activity. ChemPhysChem. 2013. V. 14. P. 4149-4157. https://doi.org/10.1002/cphc.201300733
- Estrada-Montano A.S., Gomez-Benitez V., Camacho-Davila A., Rivera E, Morales-Morales D., Zaragoza-Galan G. Metalloporphyrins: Ideal catalysts for olefin epoxidations. Journal of Porphyrins and Phthalocyanines. 2022. V. 26. № 12. P. 821-836. https://doi.org/10.1142/s1088424622300051
- Che C.M., Lo V.K.Y., Zhou C.Y., Huang J.S. Selective functionalisation of saturated C-H bonds with metalloporphyrin catalysts. Chem. Soc. Rev. 2011. V. 40. P. 1950-1975. https://doi.org/10.1039/c0cs00142b
- Costas M. Selective C-H oxidation catalysed by metalloporphyrins. Coord. Chem. Rev. 2011. V. 255. P. 2912-2932. https://doi.org/10.1016/j.ccr.2011.06.026
- Le Maux P., Srour H.F., Simonneaux G. Enantioselective water-soluble iron-porphyrin-catalysed epoxidation with aqueous hydrogen peroxide and hydroxylation with iodobenzene diacetate. Tetrahedron. 2012. V. 68. P. 5824-5828. https://doi.org/10.1016/j.tet.2012.05.014
- Haber J., Matachowski L., Pamin K., Poltowicz J. The effect of peripheral substituents in metalloporphyrins on their catalytic activity in Lyons system. J. Mol. Catal. A Chem. 2003. V. 198. P. 215-221. https://doi.org/10.1016/S1381-1169(02)00688-X
- Guo, C.C.; Liu, X.Q.; Liu, Q.; Liu, Y.; Chu, M.F.; Lin, W.Y. First industrial-scale biomimetic oxidation of hydrocarbon with air over metalloporphyrins as cytochrome P-450 monooxygenase model and its mechanistic studies. J. Porphyr. Phthalocyanines. 2009. V. 13. P. 1250-1254. https://doi.org/10.1142/S1088424609001613
- Nakagaki S., Ferreira G., Ucoski G., Dias de Freitas Castro K. Chemical reactions catalysed by metalloporphyrin-based metal-organic frameworks. Molecules. 2013. V. 18. P. 7279-7308. https://doi.org/10.3390/molecules18067279
- Barona-Castaño J.C., Carmona-Vargas C.C., Brocksom T.J., de Oliveira K.T. Porphyrins as catalysts in scalable organic reactions. Molecules. 2016. V. 21. № 3. P. 310. https://doi.org/10.3390/molecules21030310
- Zhang J.L., Che C.M. Soluble polymer-supported ruthenium porphyrin catalysts for epoxidation, cyclopropanation, and aziridination of alkenes. Organic Letters. 2002. V. 4. № 11. P. 1911-1914. https://doi.org/10.1021/ol0259138
- Yu X.Q., Huang J.S., Yu W.Y., Che C.M. Polymer-supported ruthenium porphyrins: versatile and robust epoxidation catalysts with unusual selectivity. J. Am. Chem. Soc. 2000. V. 122. P. 5337-5342. https://doi.org/10.1021/ja000461k
- Zhang J.L., Zhou H.B., Huang J.S., Che C.M. Dendritic ruthenium porphyrins: A new class of highly selective catalysts for alkene epoxidation and cyclopropanation. Chem. Eur. J. 2002. V. 8. P. 1554-1562. https://doi.org/10.1002/1521-3765(20020402)8:7<1554::AID-CHEM1554>3.0.CO;2-R
- Zhang J.L., Che C.M. Dichlororuthenium(IV) complex of meso‐tetrakis(2,6‐dichlorophenyl)porphyrin: active and robust catalyst for highly selective oxidation of arenes, unsaturated steroids, and electron‐deficient alkenes by using 2,6‐dichloropyridine N‐oxide. Chem. Eur. J. 2005. V. 11. P. 3899-3914. https://doi.org/10.1002/chem.200401008
- Nam W., Oh S., Sun Y.J., Kim J., Kim W., Woo S.K. Factors affecting the catalytic epoxidation of olefins by iron porphyrin complexes and H2O2 in protic solvents. J. Org. Chem. 2003. V. 68. P. 7903-7906. https://doi.org/10.1021/jo034493c
- Collman J., Zhang X., Lee V., Uffelman E., Brauman J. Regioselective and enantioselective epoxidation catalysed by metalloporphyrins. Science. 1993. V. 261. P. 1404-1411. https://doi.org/10.1126/science.8367724
- Groves J.T., Myers R.S. Catalytic asymmetric epoxidations with chiral iron porphyrins. J. Am. Chem. Soc. 1983. V. 105. P. 5791-5796. https://doi.org/10.1021/ja00356a016
- Rose E., Andrioletti B., Zrig S., Quelquejeu-Etheve M. Enantioselective epoxidation of olefins with chiral metalloporphyrin catalysts. Chem. Soc. Rev. 2005. V. 34. P. 573-583. https://doi.org/10.1039/b405679p
- Stephenson N.A., Bell A.T. Mechanistic insights into iron porphyrin-catalysed olefin epoxidation by hydrogen peroxide: Factors controlling activity and selectivity. J. Mol. Catal. A Chem. 2007. V. 275. P. 54-62. https://doi.org/10.1016/j.molcata.2007.05.005
- Cunningham I.D., Danks T.N., Hay J.N., Hamerton I., Gunathilagan S. Evidence for parallel destructive, and competitive epoxidation and dismutation pathways in metalloporphyrin-catalysed alkene oxidation by hydrogen peroxide. Tetrahedron. 2001. V. 57. P. 6847-6853. https://doi.org/10.1016/S0040-4020(01)00639-1
- Mironov N.A., Milordov D.V., Abilova G.R., Yakubova S.G., Yakubov, M.R. Methods for studying petroleum porphyrins (review). Petrol. Chem. 2019. V. 59. № 10. P. 1077-1091. https://doi.org/10.1134/S0965544119100074
- Zhao X., Xu C., Shi Q. Porphyrins in Heavy Petroleums: A Review. In Structure and modeling of complex petroleum mixtures. Structure and Bonding. Springer. 2015. V. 168. P. 39-70. https://doi.org/10.1007/430_2015_189
- McKay Rytting B., Singh I.D., Kilpatrick P.K., Harper M.R., Mennito A.S., Zhang Y. Ultrahigh-purity vanadyl petroporphyrins. Energy & Fuels. 2018. V. 32. № 5. P. 5711-5724. https://doi.org/10.1021/acs.energyfuels.7b03358
- Tazeev D., Musin L., Mironov N., Milordov D., Tazeeva E., Yakubova S., Yakubov M. Complexes of transition metals with petroleum porphyrin ligands: preparation and evaluation of catalytic ability. Сatalysts. 2021. V. 11. P. 1506. https://doi.org/10.3390/catal11121506
- Milordov D.V., Usmanova G.Sh., Yakubov M.R., Yakubova S.G., Romanov G.V. Comparative analysis of extractive methods of porphyrin separation from heavy oil asphatenes. Chemistry and Technology of Fuels and Oils. 2013. V. 49 № 3. P. 29-32. https://doi.org/10.1007/s10553-013-0435-7
- Yakubov M.R., Milordov D.V., Yakubova S.G., Borisov D.N., Gryaznov P.I., Usmanova G.Sh. Sulfuric acid assisted extraction and fractionation of porphyrins from heavy petroleum residuals with a high content of vanadium and nickel. Petroleum Science and Technology. 2015. V. 33 № 9. P. 992-998. https://doi.org/10.1080/10916466.2015.1030078
Дополнительные файлы
