Modifikatsiya ul'trafil'tratsionnykh membran iz poliakrilonitrila uglerodnymi chastitsami dlya baromembrannogo vydeleniya iz nefti smolistykh soedineniy i asfal'tenov
- Authors: Nebesskaya A.P1, Shvorobey Y.V1, Balynin A.V1, Kanat'eva A.Y.1, Yushkin A.A1, Volkov A.V1
-
Affiliations:
- Issue: Vol 65, No 6 (2025)
- Pages: 472–490
- Section: Articles
- URL: https://bakhtiniada.ru/0028-2421/article/view/356253
- DOI: https://doi.org/10.7868/S3034562625060045
- ID: 356253
Cite item
Full Text
Abstract
About the authors
A. P Nebesskaya
Email: nebesskaya@ips.ac.ru
ORCID iD: 0009-0006-7470-079X
Yu. V Shvorobey
ORCID iD: 0009-0006-8813-0142
A. V Balynin
ORCID iD: 0000-0002-4764-8643
A. Yu Kanat'eva
ORCID iD: 0000-0003-1633-0197
A. A Yushkin
ORCID iD: 0000-0002-0118-1515
A. V Volkov
ORCID iD: 0000-0003-4524-4597
References
- Pham P.T.H., Pham C.Q., Dam T.-T., Nguyen Q.-A., Nguyen T.M. A comprehensive review of catalyst deactivation and regeneration in heavy oil hydroprocessing // Fuel Process. Technol. 2025. V. 267. ID 108170.https://doi.org/10.1016/j.fuproc.2024.108170
- Han J., Forman G.S., Elgowainy A., Cai H., Wang M., DiVita V.B. A comparative assessment of resource efficiency in petroleum refining // Fuel. 2015. V. 157. P. 292–298. https://doi.org/10.1016/j.fuel.2015.03.038
- Sholl D.S., Lively R.P. Seven chemical separations to change the world // Nature. 2016. V. 532. № 7600. P. 435–437.https://doi.org/10.1038/532435a
- Небесская А.П., Балынин А.В., Юшкин А.А., Маркелов А.В., Волков В.В. Ультрафильтрационное разделение нефти и отработанных масел // Мембраны и мембранные технологии. 2024. Т. 14. № 5. С. 422–430. https://doi.org/10.31857/S2218117224050073
- Marafi A., Albazzaz H., Rana M.S. Hydroprocessing of heavy residual oil: Opportunities and challenges // Catal. Today. 2019. V. 329. P. 125–134. https://doi.org/10.1016/j.cattod.2018.10.067
- Ganeeva Y.M., Yusupova T.N., Romanov G.V. Asphaltene nano-aggregates: structure, phase transitions and effect on petroleum systems // Russ. Chem. Rev. 2011. V. 80. № 10. ID 993. https://doi.org/10.1070/RC2011v080n10ABEH004174
- Ali S.I., Lalji S.M., Haneef J., Ahsan U., Tariq S.M., Tirmizi S.T., Shamim R. Critical analysis of different techniques used to screen asphaltene stability in crude oils // Fuel. 2021. V. 299. ID 120874.https://doi.org/10.1016/j.fuel.2021.120874
- Hassanzadeh M., Abdouss M. A comprehensive review on the significant tools of asphaltene investigation. Analysis and characterization techniques and computational methods // J. Pet. Sci. Eng. 2022. V. 208. Pt. D. 109611.https://doi.org/10.1016/j.petrol.2021.109611
- Ramirez-Corredores M.M. Asphaltenes. The Science and Technology of Unconventional Oils: Finding Refining Opportunities. In: The Science and Technology of Unconventional Oils. Academic Press, 2017. P. 41–222.https://doi.org/10.1016/B978-0-12-801225-3.00002-4
- Mohammed I., Mahmoud M., Al Shehri D., El-Husseiny A., Alade O. Asphaltene precipitation and deposition: A critical review // J. Pet. Sci. Eng. 2021. V. 197. ID 107956. https://doi.org/10.1016/j.petrol.2020.107956
- Al-Marshed A., Hart A., Leeke G., Greaves M., Wood J. Optimization of heavy oil upgrading using dispersed nanoparticulate iron oxide as a catalyst // Energy Fuels. 2015. V. 29. № 10. P. 6306–6316.https://doi.org/10.1021/acs.energyfuels.5b01451
- Ancheyta J., Betancourt G., Centeno G., Marroquín G., Alonso F., Garciafigueroa E. Catalyst deactivation during hydroprocessing of maya heavy crude oil. 1. Evaluation at constant operating conditions // Energy Fuels. 2002. V. 16. № 6. P. 1438–1443. https://doi.org/10.1021/ef020045g
- Furimsky E., Massoth F.E. Deactivation of hydroprocessing catalysts // Catal. Today. 1999. V. 52. № 4. P. 381–495.https://doi.org/10.1016/S0920-5861(99)00096-6
- Maity S.K., Blanco E., Ancheyta J., Alonso F., Fukuyama H. Early stage deactivation of heavy crude oil hydroprocessing catalysts // Fuel. 2012. V. 100. P. 17–23. https://doi.org/10.1016/j.fuel.2011.11.017
- Fadeeva N.P., Volkova I.R., Kharchenko I.A., Elsuf’ev E.V., Fomenko E.V., Akimochkina G.V., Afanasova K.A., Nemtsev I.V., Tarasova L.S., Yushkin A.A., Nebesskaya A.P., Prozorovich V.G., Ivanets A.I., Ryzhkov I.I. Development of composite ultrafiltration membrane from fly ash microspheres and alumina nanofibers for efficient dye removal from aqueous solutions // Ceramics International. 2024. V. 50. № 24. Pt. A. P. 52890–52903. https://doi.org/10.1016/j.ceramint.2024.10.141
- Lyadov A.S., Kochubeev A.A., Nebesskaya A.P. Regeneration of Waste motor oils using membranes (A Review) // Petrol. Chemistry. 2025. V. 65. № 1. P. 3–9. https://doi.org/10.1134/S0965544124080139
- Sánchez-Arévalo C.M., Vincent-Vela M.C., Luján-Facundo M.-J., Álvarez-Blanco S. Ultrafiltration with organic solvents: A review on achieved results, membrane materials and challenges to face // Process Safety and Environmental Protection. 2023. V. 177. P. 118–137. https://doi.org/10.1016/j.psep.2023.06.073
- Kutowy O., Guerin P., Tweddle T., Woods J. Use of membranes for oil upgrading // Proc. 35th Can. Chem. Eng. Conf. 1985. V. 1. ID 241.
- Kutowy O., Tweddle T.A., Hazlett J.D. Method for the molecular filtration of predominantly aliphatic hydrocarbon liquids // Patent US № 4814088A. Oпубл. 21.03.1989.
- Magomedov R.N., Pripakhaylo A.V., Maryutina T.A., Shamsullin A.I., Ainullov T.S. Role of Solvent deasphalting in the modern oil refining practice and trends in the process development // Russ. J. Appl. Chem. 2019. V. 92. № 12. P. 1634–1648. https://doi.org/10.1134/S1070427219120036
- Chisca S., Musteata V.-E., Zhang W., Vasylevskyi S., Falca G., Abou-Hamad E., Emwas A.-H., Altunkaya M., Nunes S.P. Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation // Science. 2022. V. 376. № 6597. P. 1105–1110. https://doi.org/10.1126/science.abm7686
- Duong A., Chattopadhyaya G., Kwok W.Y., Smith K.J. An experimental study of heavy oil ultrafiltration using ceramic membranes // Fuel. 1997. V. 76. № 9. P. 821–828. https://doi.org/10.1016/S0016-2361(97)00074-4
- Arod J., Bartoli B., Bergez P., Biedermann J., Caminade P., Martinet J.M., Maurin J., Rossarie J. Process for the treatment of a hydrocarbon charge by high temperature ultrafiltration // Patent US № 4411790A. Oпубл. 25.10.1983.
- Odueyungbo S.A. Optimizing solid/liquid separation with solvent addition // Patent US № 20100163499A1. Oпубл. 01.07.2010.
- Osterhuber E.J. Patent US № 4797200A. Upgrading heavy oils by solvent dissolution and ultrafiltration/Oпубл. 10.01.1989.
- Barbier J., Marques J., Caumette G., Merdrignac I., Bouyssiere B., Lobinski R., Lienemann C.-P. Monitoring the behaviour and fate of nickel and vanadium complexes during vacuum residue hydrotreatment and fraction separation // Fuel Process. Technol. 2014. V. 119. P. 185–189. https://doi.org/10.1016/j.fuproc.2013.11.004
- Scharnagl N., Buschatz H. Polyacrylonitrile (PAN) membranes for ultra- and microfiltration // Desalination. 2001. V. 139. № 1. P. 191–198.https://doi.org/10.1016/S0011-9164(01)00310-1
- Lohokare H., Bhole Y., Taralkar S., Kharul U. Poly(acrylonitrile) based ultrafiltration membranes: Optimization of preparation parameters // Desalination. 2011. V. 282. P. 46–53. https://doi.org/10.1016/j.desal.2011.04.009
- Klaysom C., Hermans S., Gahlaut A., Van Craenenbroeck S., Vankelecom I.F.J. Polyamide/Polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: Film optimization, characterization and performance evaluation // J. Membr. Sci. 2013. V. 445. P. 25–33.https://doi.org/10.1016/j.memsci.2013.05.037
- Юшкин А.А., Балынин А.В., Нехаев А.И., Волков А.В. Разделение асфальтенов типа «архипелаг» и «континент» на ультрафильтрационных мембранах // Мембраны и мембранные технологии. 2021. Т. 11. № 2. С. 155–162. https://doi.org/10.1134/S2218117221020097
- Nebesskaya A., Kanateva A., Borisov R., Yushkin A., Volkov V., Volkov A. Polyacrylonitrile ultrafiltration membrane for separation of used engine oil // Polymers. 2024. V. 16. № 20. ID 2910.https://doi.org/10.3390/polym16202910
- Marbelia L., Mulier M., Vandamme D., Muylaert K., Szymczyk A., Vankelecom I.F.J. Polyacrylonitrile membranes for microalgae filtration: Influence of porosity, surface charge and microalgae species on membrane fouling // Algal Res. 2016. V. 19. P. 128–137. https://doi.org/10.1016/j.algal.2016.08.004
- Kammakakam I., Lai Z. Next-generation ultrafiltration membranes: A review of material design, properties, recent progress, and challenges // Chemosphere. 2023. V. 316. ID 137669. https://doi.org/10.1016/j.chemosphere.2022.137669
- Юшкин А.А., Балынин А.В., Небесская А.П., Ефимов М.Н., Муратов Д.Г., Карпачева Г.П. Деасфальтизация нефти с использованием ультрафильтрационных ПАН мембран // Мембраны и мембранные технологии. 2023. T. 13. № 6. С. 521–534. https://doi.org/10.31857/S2218117223060093
- Юшкин А.А., Балынин А.В., Ефимов М.Н., Муратов Д.Г., Карпачева Г.П., Волков А.В. Формование многослойных мембран из одного полимера с использованием обработки ИК-излучением // Мембраны и мембранные технологии. 2022. Т. 12. № 4. С. 286–293. https://doi.org/10.31857/S2218117222040113
- Miller D.J., Dreyer D.R., Bielawski C.W., Paul D.R., Freeman B.D. Surface modification of water purification membranes // Angew. Chem. Int. Ed. 2017. V. 56. № 17. P. 4662–4711. https://doi.org/10.1002/anie.201601509
- Rana D., Matsuura T. Surface Modifications for Antifouling Membranes // Chem. Rev. 2010. V. 110. № 4. P. 2448–2471.https://doi.org/10.1021/cr800208y
- Yang X., Zhang B., Liu Z., Deng B., Yu M., Li L., Jiang H., Li J. Preparation of the antifouling microfiltration membranes from poly(N, N-dimethylacrylamide) grafted poly(vinylidene fluoride) (PVDF) powder // J. Mater. Chem. 2011. V. 21. № 32. P. 11908–11915.https://doi.org/10.1039/C1JM11348H
- Cheng B., Li Z., Li Q., Ju J., Kang W., Naebe M. Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation // J. Membr. Sci. 2017. V. 534. P. 1–8.https://doi.org/10.1016/j.memsci.2017.03.053
- Li Y., Huang S., Zhou S., Fane A.G., Zhang Y., Zhao S. Enhancing water permeability and fouling resistance of polyvinylidene fluoride membranes with carboxylated nanodiamonds // J. Membr. Sci. 2018. V. 556. P. 154–163.https://doi.org/10.1016/j.memsci.2018.04.004
- Ismail N.H., Salleh W.N.W., Ismail A.F., Hasbullah H., Yusof N., Aziz F., Jaafar J. Hydrophilic polymer-based membrane for oily wastewater treatment: A review // Sep. Purif. Technol. 2020. V. 233. ID 116007.https://doi.org/10.1016/j.seppur.2019.116007
- Ong C.S., Goh P.S., Lau W.J., Misdan N., Ismail A.F. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: A review // Desalination. 2016. V. 393. P. 2–15.https://doi.org/10.1016/j.desal.2016.01.007
- Grushevenko E., Balynin A., Ashimov R., Sokolov S., Legkov S., Bondarenko G., Borisov I., Sadeghi M., Bazhenov S., Volkov A. Hydrophobic ag-containing polyoctylmethylsiloxane-based membranes for ethylene/ethane separation in gas-liquid membrane contactor // Polymers. 2022. V. 14. № 8. ID 1625.https://doi.org/10.3390/polym14081625
- Yu D.-G., Teng M.-Y., Chou W.-L., Yang M.-C. Characterization and inhibitory effect of antibacterial PAN-based hollow fiber loaded with silver nitrate // J. Membr. Sci. 2003. V. 225. № 1–2. P. 115–123.https://doi.org/10.1016/j.memsci.2003.08.010
- Qiu J.-H., Zhang Y.-W., Zhang Y.-T., Zhang H.-Q., Liu J.-D. Synthesis and antibacterial activity of copper-immobilized membrane comprising grafted poly(4-vinylpyridine) chains // J. Colloid Interface Sci. 2011. V. 354. № 1. P. 152–159.https://doi.org/10.1016/j.jcis.2010.09.090
- Li X., Fang X., Pang R., Li J., Sun X., Shen J., Han W., Wang L. Self-assembly of TiO2 nanoparticles around the pores of PES ultrafiltration membrane for mitigating organic fouling // J. Membr. Sci. 2014. V. 467. P. 226–235.https://doi.org/10.1016/j.memsci.2014.05.036
- Younas H., Bai H., Shao J., Han Q., Ling Y., He Y. Super-hydrophilic and fouling resistant PVDF ultrafiltration membranes based on a facile prefabricated surface // J. Membr. Sci. 2017. V. 541. P. 529–540.https://doi.org/10.1016/j.memsci.2017.07.035
- Arthanareeswaran G., Sriyamuna Devi T.K., Raajenthiren M. Effect of silica particles on cellulose acetate blend ultrafiltration membranes. Part I // Sep. Purif. Technol. 2008. V. 64. № 1. P. 38–47.https://doi.org/10.1016/j.seppur.2008.08.010
- Zhang X., Fang X., Li J., Pan S., Sun X., Shen J., Han W., Wang L., Zhao S. Developing new adsorptive membrane by modification of support layer with iron oxide microspheres for arsenic removal // J. Colloid Interface Sci. 2018. V. 514. P. 760–768. https://doi.org/10.1016/j.jcis.2018.01.002
- Bao C., Yuan H., Huang F., Shi J., Hao R., Zhang Y., Chen X., Lu J. Self-assembled sandwich-like SA–GO/PAN membranes with high-performance for pervaporative desalination of salt solutions // Iran. Polym. J. 2023. V. 32. № 10. P. 1291–1306.https://doi.org/10.1007/s13726-023-01202-8
- Ayyaru S., Ahn Y.-H. Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes // J. Membr. Sci. 2017. V. 525. P. 210–219. https://doi.org/10.1016/j.memsci.2016.10.048
- Dmitrenko M.E., Penkova A.V., Missyul A.B., Kuzminova A.I., Markelov D.A., Ermakov S.S., Roizard D. Development and investigation of mixed-matrix PVA-fullerenol membranes for acetic acid dehydration by pervaporation // Sep. Purif. Technol. 2017. V. 187. P. 285–293. https://doi.org/10.1016/j.seppur.2017.06.061
- Penkova A.V., Dmitrenko M.E., Ermakov S.S., Toikka A.M., Roizard D. Novel green PVA-fullerenol mixed matrix supported membranes for separating water-THF mixtures by pervaporation // Environ. Sci. Pollut. Res. 2018. V. 25. № 21. P. 20354–20362. https://doi.org/10.1007/s11356-017-9063-9
- Eremin Y., Grekhov A., Belogorlov A. Percolation effects in mixed matrix membranes with embedded carbon nanotubes // Membranes. 2022. V. 12. № 11. ID 1100. https://doi.org/10.3390/membranes12111100
- Sacco L.N., Vollebregt S. Overview of engineering carbon nanomaterials such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene and nanodiamonds and other carbon allotropes inside porous anodic alumina (PAA) templates // Nanomaterials. 2023. V. 13. № 2. ID 260.https://doi.org/10.3390/nano13020260
- Liu Q., Huang S., Zhang Y., Zhao S. Comparing the antifouling effects of activated carbon and TiO2 in ultrafiltration membrane development // J. Colloid Interface Sci. 2018. V. 515. P. 109–118.https://doi.org/10.1016/j.jcis.2018.01.026
- Pulyalina A.Yu., Tyan N.S., Faykov I.I., Polotskaya G.A., Rostovtseva V.A. Transport Properties of Ultrafiltration Membranes Based on Copolyimide/Nanodiamonds Composites // Membr. Membr. Technol. 2022. V. 4. № 5. P. 328–335.https://doi.org/10.1134/S2517751622050092
- Abbasi T., Bayati B., Ghamartale A., Rezaei H. Nanoparticle-mediated control of asphaltene aggregation in oil reservoirs: Insights and implications // J. Mol. Liq. 2025. V. 423. ID 126975. https://doi.org/10.1016/j.molliq.2025.126975
- Taha S.M., Manshad A.K. State of asphaltene in crude oil and application of nano-chemicals for aggregation inhibition: A comprehensive review // Fuel. 2025. V. 393. ID 135004. https://doi.org/10.1016/j.fuel.2025.135004
- Mahmoudi Alemi F., Mohammadi S., Mousavi-Dehghani S.A., Rashidi A., Hosseinpour N., Seif A. Experimental and DFT studies on the effect of carbon nanoparticles on asphaltene precipitation and aggregation phenomena // Chem. Eng. J. 2021. V. 422. ID 130030. https://doi.org/10.1016/j.cej.2021.130030
- Shulga Y.M., Baskakov S.A., Smirnov V.A., Shulga N.Y., Belay K.G., Gutsev G.L. Graphene oxide films as separators of polyaniline-based supercapacitors // J. Power Sources. 2014. V. 245. P. 33–36.https://doi.org/10.1016/j.jpowsour.2013.06.094
- Mironova E.Yu., Ermilova M.M., Efimov M.N., Zemtsov L.M., Orekhova N.V., Karpacheva G.P., Bondarenko G.N., Zhilyaeva N.A., Muraviev D.N., Yaroslavtsev A.B. Detonation nanodiamonds as catalysts of steam reforming of ethanol // Russ. Chem. Bull. 2013. V. 62. № 11. P. 2317–2321.https://doi.org/10.1007/s11172-013-0336-2
- Грехов А.М., Еремин Ю.С. Влияние концентрации углеродных нанотрубок в хлороформе на кинетику их агломерации седиментации // Российские нанотехнологии. 2015. Т. 10. № 7–8. C. 15–20.
- Efimov M.N., Vasilev A.A., Muratov D.G., Baranchikov A.E., Karpacheva G.P. IR radiation assisted preparation of KOH-activated polymer-derived carbon for methylene blue adsorption // J. Environ. Chem. Eng. 2019. V. 7. № 6. ID 103514.https://doi.org/10.1016/j.jece.2019.103514
- Nap R., Szleifer I. Control of carbon nanotube–surface interactions: the role of grafted polymers //Langmuir. 2005. V. 21. № 26. P. 12072–12075.https://doi.org/10.1021/la051601c
- Shvartzman-Cohen R., Nativ-Roth E., Baskaran E., Levi-Kalisman Y., Szleifer I., Yerushalmi-Rozen R. Selective dispersion of single-walled carbon nanotubes in the presence of polymers: the role of molecular and colloidal length scales // J. Am. Chem. Soc. 2004. V. 126. № 45. P. 14850–14857.https://doi.org/10.1021/ja046377c
- Szleifer I., Yerushalmi-Rozen R. Polymers and carbon nanotubes–dimensionality, interactions and nanotechnology // Polymer. 2005. V. 46. № 19. P. 7803–7818. https://doi.org/10.1016/j.polymer.2005.05.104
- Kovářík T., Bělský P., Rieger D., Ilavsky J., Jandová V., Maas M., Šutta P., Pola M., Medlín R. Particle size analysis and characterization of nanodiamond dispersions in water and dimethylformamide by various scattering and diffraction methods // J. Nanopart. Res. 2020. V. 22. № 2. ID 34.https://doi.org/10.1007/s11051-020-4755-3
- Yushkin A., Basko A., Balynin A., Efimov M., Lebedeva T., Ilyasova A., Pochivalov K., Volkov A. Effect of acetone as co-solvent on fabrication of polyacrylonitrile ultrafiltration membranes by non-solvent induced phase separation // Polymers. 2022. V. 14. № 21. ID 4603. https://doi.org/10.3390/polym14214603
- Российский федеральный геологический фонд: официальный сайт. М. URL: http://www.rfgf.ru.
- Небесская А.П., Шворобей Ю.В., Балынин А.В., Канатьева А.Ю., Юшкин А.А. Деасфальтизация нефти с использованием полиакрилонитриловых мембран, полученных из растворов с этилацетатом // Нефтехимия. 2025. Т. 65. № 1. C. 55–66.https://doi.org/10.31857/S0028242125010057
- Saini B., Sinha M.K., Dey A. Functionalized polymeric smart membrane for remediation of emerging environmental contaminants from industrial sources: Synthesis, characterization and potential applications // Process Safety and Environmental Protection. 2022. V. 161. P. 684–702. https://doi.org/10.1016/j.psep.2022.03.075
- Юшкин А.А., Балынин А.В., Небесская А.П., Ефимов М.Н., Бахтин Д.С., Баскаков С.А., Канатьева А.Ю. Получение ультрафильтрационных мембран из композитов ПАН с гидрофильными частицами для выделения тяжелых компонентов нефти // Мембраны и мембранные технологии. 2023. Т. 13. № 4. С. 331–344. https://doi.org/10.31857/S2218117223040077
- Yushkin A.A., Balynin A.V., Nebesskaya A.P., Chernikova E.V., Muratov D.G., Efimov M.N., Karpacheva G.P. Acrylonitrile–acrylic acid copolymer ultrafiltration membranes for selective asphaltene removal from crude oil // Membranes. 2023. V. 13. № 9. ID 775.https://doi.org/10.3390/membranes13090775
Supplementary files

