SRAVNITEL'NOE ISSLEDOVANIE GIDRIROVANIYa KARBONIL'NYKh SOEDINENIY RAZLIChNYKh KLASSOV NA GRANULIROVANNYKh METALLO-OKSIDNYKh KATALIZATORAKh Me/Al2O3 (Me = Ni, Co, Cu)
- Autores: Nuzhdin A.L1, Bukhtiyarova M.V1, Pakharukova V.P1, Aleksandrov P.V1, Ut'eva S.O1, Bukhtiyarova G.A1
-
Afiliações:
- Edição: Volume 65, Nº 6 (2025)
- Páginas: 501–509
- Seção: Articles
- URL: https://bakhtiniada.ru/0028-2421/article/view/356255
- DOI: https://doi.org/10.7868/S3034562625060061
- ID: 356255
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
A. Nuzhdin
Email: anuzhdin@catalysis.ru
ORCID ID: 0000-0003-1111-4524
M. Bukhtiyarova
ORCID ID: 0000-0002-5520-6458
V. Pakharukova
ORCID ID: 0000-0001-8808-0161
P. Aleksandrov
ORCID ID: 0000-0002-1216-8500
S. Ut'eva
ORCID ID: 0009-0008-7119-5227
G. Bukhtiyarova
ORCID ID: 0000-0001-6988-5749
Bibliografia
- Rahman A., S-Al-Deyab S. A review on reduction of acetone to isopropanol with Ni nano superactive, heterogeneous catalysts as an environmentally benevolent approach // Appl. Catal. A: Gen. 2014. V. 469. P. 517–523. https://doi.org/10.1016/j.apcata.2013.10.015
- Bhanushali J.T., Kainthla I., Keri R.S., Nagaraja B.M. Catalytic hydrogenation of benzaldehyde for selective synthesis of benzyl alcohol: A Review // ChemistrySelect. 2016. V. 1. № 13. P. 3839–3853. https://doi.org/10.1002/slct.201600712
- Cheng S., Ding J., Chen Y., Pan G., Feng X., Xu X., Xu J. Enhanced catalytic transfer hydrogenation of biomass-based furfural into furfuryl alcohol over Co3O4-based mixed oxide catalysts from hydrotalcite // Appl. Catal. A: Gen. 2024. V. 684. ID 119909. https://doi.org/10.1016/j.apcata.2024.119909
- Srivastava S., Jadeja G.C., Parikh J. Synergism studies on alumina-supported copper-nickel catalysts towards furfural and 5-hydroxymethylfurfural hydrogenation // J. Mol. Catal. A: Chem. 2017. V. 426. Pt. A. P. 244–256. https://doi.org/10.1016/j.molcata.2016.11.023
- Разваляева А.В., Сергеев А.О., Косьяненко Д.С., Панов А.О., Шурак А.А., Небыков Д.Н., Мохов В.М. Изучение процесса гидрирования карбонильных соединений в присутствии наноструктурированных никелевых катализаторов // Известия ВолгГТУ. 2023. № 12. C. 47–50. https://doi.org/10.35211/1990-5297-2023-12-283-46-50
- Nuzhdin A.L., Bukhtiyarova M.V., Bukhtiyarova G.A. Organic synthesis in flow mode by selective liquid-phase hydrogenation over heterogeneous non-noble metal catalysts // Org. Biomol. Chem. 2024. V. 22. P. 7936–7950. https://doi.org/10.1039/d4ob00873a
- Shutkina O.V., Ponomareva O.A., Kots P.A., Ivanova I.I. Selective hydrogenation of acetone in the presence of benzene // Catal. Today. 2013. V. 218–219. P. 30–34. https://doi.org/10.1016/j.cattod.2013.05.017
- Голубина Е.В., Локтева Е.С., Кавалерская Н.Е., Маслаков К.И. Влияние температуры прокаливания на эффективность Ni/Al2O3 в реакции гидродехлорирования // Кинет. катал. 2020. Т. 61. № 3. С. 410–427. https://doi.org/10.31857/S0453881120030144
- Bartholomew C.H., Farrauto R.J. Chemistry of nickel-alumina catalysts // J. Сatal. 1976. V. 45. № 1. P. 41–53. https://doi.org/10.1016/0021-9517(76)90054-3
- Gao X., Ashok J., Kawi S. A review on roles of pretreatment atmospheres for the preparation of efficient Ni-based catalysts // Catal. Today. 2022. V. 397–399. P. 581–591. https://doi.org/10.1016/j.cattod.2021.06.009
- Partridge M.G., Vissenberg M.J., Gabrielsson A. Catalyst and method of catalyst manufacture // Patent US № 9387462 B2. 2016.
- Lok C.M., Gray G., Pogers S.D., Bailey S. Hydrogenation catalysts // Patent US № 6846772 B2. 2005.
- Lok C.M. Copper-containing materials // Patent US № 7560413 B2. 2009.
- Lok C.M., Kelly G.J., Gray G. Catalysts with high cobalt surface area // Patent US № 7501378 B2. 2009.
- Ellis P.R., Enache D.I., James D.W., Jones D.S., Kelly G.J. A robust and precious metal-free high performance cobalt Fischer–Tropsch catalyst // Nat. Catal. 2019. V. 2. P. 623–631. https://doi.org/10.1038/s41929-019-0288-5
- Sotiles A.R., Massarotti F., de Oliveira Pires J.C., Facchin Ciceri M.E., Budziak Parabocz C.R. Cobalt complexes: Introduction and spectra analysis // Orbital: Electron. J. Chem. 2019. V. 11. № 6. P. 348–354. http://dx.doi.org/10.17807/orbital.v11i6.1242
- Feng J.T., Lin Y.J., Evans D.G., Duan X., Li D.Q. Enhanced metal dispersion and hydrodechlorination properties of a Ni/Al2O3 catalyst derived from layered double hydroxides // J. Catal. 2009. V. 266. № 2. P. 351–358. https://doi.org/10.1016/j.jcat.2009.07.001
- Rynkowski J.M., Paryjczak T., Lenik M. On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts // Appl. Catal. A: Gen. 1993. V. 106. № 1. P. 73–82.https://doi.org/10.1016/0926-860X(93)80156-K
- Ji Y., Zhao Z., Duan A., Jiang G., Liu J. Comparative study on the formation and reduction of bulk and Al2O3-supported cobalt oxides by H2-TPR technique // J. Phys. Chem. C. 2009. V. 113. № 17. P. 7186–7199.https://doi.org/10.1021/jp8107057
- Ail S.S., Benedetti V., Baratieri M., Dasappa S. Fuel-Rich combustion synthesized Co/Al2O3 catalysts for wax and liquid fuel production via Fischer–Tropsch reaction // Ind. Eng. Chem. Res. 2018. V. 57. № 11. P. 3833–3843. https://doi.org/10.1021/acs.iecr.7b04174
- Khairudin N.F., Mohammadi M., Mohamed A.R. An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane // Environ. Sci. Pollut. Res. 2021. V. 28. P. 29157–29176. https://doi.org/10.1007/s11356-021-12794-0
- Dow W.P., Wang Y.P., Huang T.J. Yttria-Stabilized Zirconia Supported Copper oxide Catalyst: I. Effect of oxygen vacancy of support on copper oxide reduction // J. Catal. 1996. V. 160. № 2. P. 155–170. https://doi.org/10.1006/jcat.1996.0135
- Gao Y., Yi W., Yang J., Jiang K., Yang T., Li Z., Zhang M., Liu Z., Wu B. Effect of calcination atmosphere on the performance of Cu/Al2O3 Catalyst for the selective hydrogenation of furfural to furfuryl alcohol // Molecules. 2024. V. 29. № 12. ID 2753. https://doi.org/10.3390/molecules29122753
- Shi L., Yan P., Gao Z., Huang W. Effect of copper source on the structure–activity of CuAl2O4 spinel catalysts for CO hydrogenation // Arabian J. Chem. 2023. V. 16. ID 104464. https://doi.org/10.1016/j.arabjc.2022.104464
- Kwak B.K., Park D.S., Yun Y.S., Yi J. Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol–gel method for the hydrogenolysis of glycerol // Catal. Commun. 2012. V. 24. P. 90–95.https://doi.org/10.1016/j.catcom.2012.03.029
- Déchamp N., Gamez A., Perrard A., Gallezot P. Kinetics of glucose hydrogenation in a trickle-bed reactor // Catal. Today. 1995. V. 24. № 1–2. P. 29–34. https://doi.org/10.1016/0920-5861(95)00019-C
- Nijhuis T.A., Dautzenberg F.M., Moulijn J.A. Modeling of monolithic and trickle-bed reactors for the hydrogenation of styrene // Chem. Eng. Sci. 2003. V. 58. № 7. P. 1113–1124. https://doi.org/10.1016/S0009-2509(02)00547-X
Arquivos suplementares

