INCREASING THERMAL STABILITY OF BIO-OIL BY NEUTRALIZATION AND CATALYTIC CRACKING OF STABILIZED PRODUCTS
- Authors: Kuznetsov P.1, Atlasov V.1, Kalinina N.1, Dement’ev K.1, Naranov E.1, Wang K.2, Luo Z.2
-
Affiliations:
- A.V. Topchiev Institute of Petrochemical synthesis Russian Academy of Sciences
- State Key Laboratory of Clean Energy Utilization, Zhejiang University
- Issue: Vol 65, No 2 (2025)
- Pages: 116-127
- Section: Articles
- URL: https://bakhtiniada.ru/0028-2421/article/view/287989
- DOI: https://doi.org/10.31857/S0028242125020049
- EDN: https://elibrary.ru/KLVQBG
- ID: 287989
Cite item
Abstract
This work investigates a method for stabilizing bio-oil by increasing its pH through treatment with sodium hydroxide and ammonia. It was shown, that alkaline treatment significantly improves the thermal stability of bio-oil and provide the possibility of its involvement in the process of catalytic cracking of vacuum gas oil was demonstrated. The stabilized samples were subjected to catalytic cracking in order to study the effect of the processing stage on the yield of the main products. An increase in the pH level of bio-oil contributes the intensification of the cracking process. Sodium hydroxide treatment leads to an increase in the conversion of vacuum gas oil from 78.6 to 82.2 % wt. and the yield of the gasoline fraction (IBP-200ºC) increased from 44.7 to 47.3 % wt. Ammonia treatment leads to an increase the yield of the gasoline fraction from 50 to 54.2 % wt. However, the cracking of bio-oil treated with sodium hydroxide led to irreversible catalyst deactivation due to the presence of sodium, whereas no such deactivation was observed for bio-oil treated with ammonia.
Full Text

About the authors
Petr Kuznetsov
A.V. Topchiev Institute of Petrochemical synthesis Russian Academy of Sciences
Email: pkuznetsov@ips.ac.ru
ORCID iD: 0000-0002-3140-3035
https://istina.msu.ru/profile/Petr1991/
PhD, Senior Researcher, Petroleum Chemistry and Petrochemical Synthesis Laboratory (Laboratory №2)
Russian Federation, Moscow, 119991 Russia, Leninsky Prospekt, 29Valentin Atlasov
A.V. Topchiev Institute of Petrochemical synthesis Russian Academy of Sciences
Email: vavatlas@ips.ac.ru
ORCID iD: 0000-0003-1450-3947
Russian Federation, Moscow, 119991 Russia, Leninsky Prospekt, 29
Natalia Kalinina
A.V. Topchiev Institute of Petrochemical synthesis Russian Academy of Sciences
Email: kalinina.na@ips.ac.ru
ORCID iD: 0009-0003-3571-7183
Russian Federation, Moscow, 119991 Russia, Leninsky Prospekt, 29
Konstantin Dement’ev
A.V. Topchiev Institute of Petrochemical synthesis Russian Academy of Sciences
Email: kdementev@ips.ac.ru
ORCID iD: 0000-0002-8102-8624
Russian Federation, Moscow, 119991 Russia, Leninsky Prospekt, 29
Evgeny Naranov
A.V. Topchiev Institute of Petrochemical synthesis Russian Academy of Sciences
Email: naranov@petrol.chem.msu.ru
ORCID iD: 0000-0002-3815-9565
Russian Federation, Moscow, 119991 Russia, Leninsky Prospekt, 29
Kaige Wang
State Key Laboratory of Clean Energy Utilization, Zhejiang University
Email: kaigewang@zju.edu.cn
China, Hangzhou 310027
Zhongyang Luo
State Key Laboratory of Clean Energy Utilization, Zhejiang University
Author for correspondence.
Email: zyluo@zju.edu.cn
China, Hangzhou 310027
References
- URL: https://www.globalcarbonproject.org/global/pdf/LeQuere_2014_GlobalCarbonBudget2014.ESDD-D.pdf/ сайт фирмы Global Carbon Project (дата обращения: 17.11.2024).
- Jindal M., Negi A., Palla V.C.S., Krishna B.B., Thallada B. Catalytic interventions in bio-oil production from lignocellulosic biomass and co-processing with petroleum refinery fractions: A review // Biomass and Bioenergy. 2024. V. 183. ID107119. https://doi.org/10.1016/j.biombioe.2024.107119
- Hirano A., Hon-Nami K., Kunito S., Hada M., Ogushi Y. Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance // Catalysis Today. 1998. V. 45, № 1-4. P. 399–404. https://doi.org/10.1016/S0920-5861(98)00275-2
- Pütün A.E., Ozbay N., Onal E.P., Pütün E. Fixed-bed pyrolysis of cotton stalk for liquid and solid products // Fuel Process. Technol. 2005. V. 86, № 11. P. 1207–1219. https://doi.org/10.1016/j.fuproc.2004.12.006
- Samolada M.C., Baldauf W., Vasalos I.A. Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking // Fuel. 1998. V. 77, № 14. P. 1667–1675. https://doi.org/10.1016/S0016-2361(98)00073-8
- Xu J., Li C., Dai L., Xu C., Zhong Y., Yu F., Si C. Biomass fractionation and lignin fractionation towards lignin valorization // ChemSusChem. 2020. V. 13, № 17. P. 4284–4295. https://doi.org/10.1002/cssc.202001491
- Lindfors C., Kuoppala E., Oasmaa A., Solantausta Y., Arpiainen V. Fractionation of bio-oil // Energy & Fuels. 2014. V. 28, № 9. P. 5785–5791. https://doi.org/10.1021/ef500754d
- Chan Y.H., Loh S.K., Chin B.L.F., Yiin C.L., How B.S., Cheah K.W., Wong M.E., Loy A.C.M., Gwee Y.L., Lo S.L.Y., Yusup S., Lam S.S. Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects // Chem. Engin. J. 2020. V. 397. ID12540. https://doi.org/10.1016/j.cej.2020.125406
- Oasmaa A., Kuoppala E., Selin J.F., Gust S., Solantausta Y. Fast pyrolysis of forestry residue and pine. 4. Improvement of the product quality by solvent addition // Energy & Fuels. 2004. V. 18, № 5. P. 1578–1583. https://doi.org/10.1021/ef040038n
- Mahfud F.H., Melian-Cabrera I., Manurung R., Heeres H.J. Biomass to fuels: upgrading of flash pyrolysis oil by reactive distillation using a high boiling alcohol and acid catalysts // Process Safety and Environmental Protection. 2007. V. 85, № 5. P. 466–472. https://doi.org/10.1205/psep07013
- Junming X., Jianchun J., Yunjuan S., Yanju L. Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics // Biomass and Bioenergy. 2008. V. 32, № 11. P. 1056–1061. https://doi.org/10.1016/j.biombioe.2008.02.002
- Zhang Q., Chang J., Wang Xu.Y. Upgrading bio-oil over different solid catalysts // Energy & Fuels. 2006. V. 20, № 6. P. 2717–2720. https://doi.org/10.1021/ef060224o
- Xiong W.M., Zhu M.Z., Deng L., Fu Y., Guo Q.X. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts // Energy & Fuels. 2009. V. 23, № 4. P. 2278–2283. https://doi.org/10.1021/ef801021j
- Peng J., Chen P., Lou H., Zheng X. Upgrading of bio-oil over aluminum silicate in supercritical ethanol // Energy & Fuels. 2008. V. 22, № 5. P. 3489–3492. https://doi.org/10.1021/ef8001789
- Peng J., Chen P., Lou H., Zheng X. Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol // Bioresource Technology. 2009. V. 100, № 13. P. 3415–3418. https://doi.org/10.1016/j.biortech.2009.02.007
- de Miguel Mercader F., Groeneveld M.J., Kersten S.R.A., Way N.W.J., Schaverien C.J., Hogendoorn J.A. Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units // Appl. Catalysis B: Environmental. 2010. V. 96, № 1-2. P. 57–66. https://doi.org/10.1016/j.apcatb.2010.01.033
- Elliott D.C., Hart T.R., Neuenschwander G.G., Rotness L.J., Zacher A.H. Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products // Environmental Progress & Sustainable Energy. 2009. V. 28, № 3. P. 441–449. https://doi.org/10.1002/ep.10384
- Kwon K.C., Mayfield H., Marolla T., Nichols B., Mashburn M. Catalytic deoxygenation of liquid biomass for hydrocarbon fuels // Renewable Energy. 2011. V. 36, № 3. P. 907–915. https://doi.org/10.1016/j.renene.2010.09.004
- Venderbosch R.H., Ardiyanti A.R., Wildschut J., Oasmaa A., Heeres H.J. Stabilization of biomass-derived pyrolysis oils // J. of Chem. Technology & Biotechnology. 2010. V. 85, № 5. P. 674–686. https://doi.org/10.1002/jctb.2354
- Fogassy G., Thegarid N., Toussaint G., van Veen A.C., Schuurman Y., Mirodatos C. Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units // Appl. Catalysis B: Environ. 2010. V. 96, № 3-4. P. 476–485. https://doi.org/10.1016/j.apcatb.2010.03.008
- Tang Z., Lu Q., Zhang Y., Zhu X., Guo Q. One step bio-oil upgrading through hydrotreatment, esterification, and cracking // Industrial & Engineering Chemistry Research. 2009. V. 48, № 15. P. 6923–6929. https://doi.org/10.1021/ie900108d
- Deng L., Yan Z., Fu Y., Guo Q.X. Green solvent for flash pyrolysis oil separation // Energy & Fuels. 2009. V. 23, № 6. P. 3337–3338. https://doi.org/10.1021/ef9002268
- Park L.K.E., Ren S., Yiacoumi S., Ye X.P., Borole A.P., Tsouris C. pH neutralization of aqueous bio-oil from switchgrass intermediate pyrolysis using process intensification devices // Energy & Fuels. 2017. V. 31, № 9. P. 9455–9464. https://doi.org/10.1021/acs.energyfuels.7b00854
- Дементьев К.И., Паланкоев Т.А., Кузнецов П.С., Абрамова Д.С., Ромазанова Д.А., Махин Д.Ю., Максимов А.Л. Влияние размерного фактора на активность цеолитов в реакции жидкофазного крекинга углеводородов // Нефтехимия. 2020. Т. 60, № 1. С. 34–43. https://doi.org/10.31857/S0028242120010062 [Dement'ev K.I., Palankoev T.A., Kuznetsov P.S., Abramova D.S., Romazanova D.A., Makhin D.Y., Maksimov A.L. Effect of size factor on the activity of zeolites in the liquid-phase cracking of hydrocarbons // Petrol. Chem. 2020. V. 60. P. 30–38. https://doi.org/10.1134/S0965544120010065]
Supplementary files
