NICKEL PASSIVATION BY BORON-CONTAINING COMPOUNDS IN THE PROCESS OF CRACKING HYDROCARBON FEEDSTOCK
- Authors: Shakirov I.1, Atlasov V.2, Kardashev S.1, Lysenko S.1, Dement'ev K.2, Borisov R.2, Sinikova N.1, Egazar`yants S.1, Maksimov A.L.1,2, Karakhanov E.1
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Chemistry
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
- Issue: Vol 65, No 3 (2025)
- Pages: 193-204
- Section: Articles
- URL: https://bakhtiniada.ru/0028-2421/article/view/286303
- DOI: https://doi.org/10.31857/S0028242125030039
- EDN: https://elibrary.ru/LCZXHG
- ID: 286303
Cite item
Abstract
Experiments on nickel passivation with a boron-containing additive in the process of catalytic cracking of hydrotreated vacuum gas oil were conducted on a pilot unit. The effect of nickel passivation on the group composition of cracking gasoline was studied. The effect of the precipitation of a boron-containing passivator from the feedstock on the characteristics of the catalytic cracking process was shown. It was found that the oil-soluble boron-containing passivator is active in the process of nickel deactivation on the catalyst under catalytic cracking conditions when the additive is fed to the unit together with the hydrocarbon feedstock.
Full Text

About the authors
I. Shakirov
Lomonosov Moscow State University, Faculty of Chemistry
Email: sammy-power96@yandex.ru
ORCID iD: 0000-0003-2029-693X
Russian Federation, Moscow, 119991
V. Atlasov
A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
Email: vavatlas@ips.ac.ru
ORCID iD: 0000-0003-1450-3947
Russian Federation, Moscow, 119991
S. Kardashev
Lomonosov Moscow State University, Faculty of Chemistry
Email: chemus6@gmail.com
ORCID iD: 0000-0003-1818-7697
Russian Federation, Moscow, 119991
S. Lysenko
Lomonosov Moscow State University, Faculty of Chemistry
Email: ser.v.lysenko@gmail.com
ORCID iD: 0009-0006-7826-2811
Russian Federation, Moscow, 119991
K. Dement'ev
A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
Email: kdementev@ips.ac.ru
ORCID iD: 0000-0002-8102-8624
Russian Federation, Moscow, 119991
R. Borisov
A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
Email: borisov@ips.ac.ru
ORCID iD: 0000-0002-8203-7055
Russian Federation, Moscow, 119991
N. Sinikova
Lomonosov Moscow State University, Faculty of Chemistry
Email: 7422990@mail.ru
ORCID iD: 0000-0001-7196-0082
Russian Federation, Moscow, 119991
S. Egazar`yants
Lomonosov Moscow State University, Faculty of Chemistry
Email: egaz@petrol.chem.msu.ru
ORCID iD: 0000-0001-9160-4050
Russian Federation, Moscow, 119991
A. L. Maksimov
Lomonosov Moscow State University, Faculty of Chemistry; A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
Email: max@ips.ac.ru
ORCID iD: 0000-0001-9297-4950
член-корреспондент РАН, директор
Russian Federation, Moscow, 119991; Moscow, 119991E. Karakhanov
Lomonosov Moscow State University, Faculty of Chemistry
Author for correspondence.
Email: kar@petrol.chem.msu.ru
ORCID iD: 0000-0003-4727-954X
Russian Federation, Moscow, 119991
References
- Adanenche D.E., Aliyu A., Atta A.Y., El-Yakubu B.J. Residue fluid catalytic cracking: A review on the mitigation strategies of metal poisoning of RFCC catalyst using metal passivators/traps // Fuel. 2023. V. 343. ID 127894. https://doi.org/10.1016/j.fuel.2023.127894
- Salahshour P., Yavari M., Güleç F., Karaca H., Tarighi S., Habibzadeh S. Development of heavy metal passivators in residue fluid catalytic cracking process // J. Compos. Compd. 2022. V. 4, № 13. P. 186–194. https://doi.org/10.1016/10.52547/jcc.4.4.3
- Караханов Э.А., Братков А.А., Лысенко С.В. Реактивация отравленного никелем катализатора крекинга маслорастворимыми пассиваторами // Нефтехимия. 1995. Т. 35, № 5. С. 421–424. [Karakhanov E.A., Bratkov A.A., Lysenko S.V. Reactivation of a nickel-poisoned cracking catalyst with oil-soluble passivators // Petrol. Chemistry. 1995. V. 35, № 5. P. 402–405.]
- Al-Sabawi M., Seth D., de Bruijn T. Effect of modifiers in n-pentane on the supercritical extraction of Athabasca bitumen // Fuel Process. Technol. 2011. V. 92, № 10. P. 1929–1938. https://doi.org/10.1016/j.fuproc.2011.05.010
- Fan S., Liu H., Biney B.W., Wang J., Al-shiaani N.H.A., Xu G., Guo A., Chen K., Wang Z. Effect of colloidal stability and miscibility of polar/aromatic phases on heavy oil demetallization // Energy Fuels. 2022. V. 36, № 12. P. 6109–6118. https://doi.org/10.1021/acs.energyfuels.2c00581
- Abbas S., Maqsood Z.T., Ali M.F. The demetallization of residual fuel oil and petroleum residue // Pet. Sci. Technol. 2010. V. 28, № 17. P. 1770–1777. https://doi.org/10.1080/10916460903226122
- Ongarbayev Y., Oteuli S., Tileuberdi Y., Maldybaev G., Nurzhanova S. Demetallization and desulfurization of heavy oil residues by adsorbents // Pet. Sci. Technol. 2019. V. 37, № 9. P. 1045–1052. https://doi.org/10.1080/10916466.2019.1570257
- Wu B., Zhu J., Wang J., Jiang C. Technique for high-viscosity crude oil demetallization in the liaohe oil field // Energy Fuels. 2006. V. 20, № 4. P. 1345–1349. https://doi.org/10.1021/ef0501896
- Ferreira C., Tayakout-Fayolle M., Guibard I., Lemos F., Toulhoat H., Ramôa Ribeiro F. Hydrodesulfurization and hydrodemetallization of different origin vacuum residues: Characterization and reactivity // Fuel. 2012. V. 98. P. 218–228. https://doi.org/10.1016/j.fuel.2012.03.054
- Keeley C.V., Shackleford A., Clough M., Srikantharajah S., O’Berry B., Yilmaz B. Catalyst technologies for improved FCC yields // Pet. Technol. Q. 2017. V. 22, № 5. P. 31–35.
- McGuire R., Smith G.M., Yilmaz B. FCC catalyst compositions containing boron oxide // Patent US № 9895680 B2. Appl. 19.12.2013.
- McGuire R., Smith G.M., Yilmaz B. Boron oxide in FCC processes // Patent US № 9441167 B2. Appl. 19.12.2013.
- Charisteidis I.D., Trikalitis P.N., Triantafyllidis K.S., Komvokis V., Yilmaz B. Characterization of Ni-phases and their transformations in fluid catalytic cracking (FCC) catalysts: comparison of conventional versus boron-based Ni-passivation // Catalysts. 2023. V. 13, № 1. ID 3. https://doi.org/10.3390/catal13010003
- Yuan C., Zhou L., Chen Q., Su C., Li Z., Ju G. The research on anti-nickel contamination mechanism and performance for boron-modified FCC catalyst // Materials. 2022. V. 15, № 20. ID 7220. https://doi.org/10.3390/ma15207220
- Шакиров И.И., Кардашев С.В., Лысенко С.В., Караханов Э.А. Способ пассивации тяжелых металлов на катализаторах крекинга борсодержащими соединениями // Патент РФ № 2794336 C1. Опубликовано 17.04.2023.
- Герзелиев И.М., Дементьев. К.И., Попов А.Ю., Пахманова О.А., Басханова М.Н., Сахарова И.Е., Хаджиев С.Н. Пилотная установка каталитического крекинга нефтяных остатков. Тезисы докладов IX школы-конференции молодых ученых по нефтехимии. Звенигород. 2008.
- Шакиров И.И., Кардашев С.В., Лысенко С.В., Бороноев М.П., Максимов А.Л., Караханов Э.А. Пассивация никеля на катализаторах крекинга // Журн. прикл. химии. 2023. Т. 96, № 6. С. 632–640. https://doi.org/10.31857/S0044461823060105 [Shakirov I.I., Kardashev S.V., Lysenko S.V., Boronoev M.P., Maximov A.L., Karakhanov E.A. Nickel Passivation on Cracking Catalysts // Russ. J. Appl. Chem. 2023. V. 96. P. 702–709. https://doi.org/10.1134/S1070427223060101]
- Шакиров И.И., Лысенко С.В., Кардашев С.В., Синикова Н.А., Егазарьянц С.В., Максимов А.Л., Караханов Э.А. Пассивация никеля в присутствии ванадия на катализаторах крекинга // Нефтехимия. 2024. Т. 64, № 3. P. 204–218. https://doi.org/10.31857/S0028242124030027
- Cheng W.C., Juskelis M.V., Sua´rez W. Reducibility of metals on fluid cracking catalyst // Appl. Catal. A: Gen. 1993. V. 103, № 1. P. 87–103. https://doi.org/10.1016/0926-860X(93)85176-P
- Караханов Э.А., Ковалева Н.Ф., Лысенко С.В. Влияние пассивации никеля цитратами сурьмы, олова и висмута на состав продуктов крекинга углеводородов различных классов // Вecтн. Моск. ун-та. Сер. 2. Химия. 1999. Т. 40, № 1. С. 60–63.
- Farag H., Ng S., de Lasa H. Kinetic modeling of catalytic cracking of gas oils using in situ traps (FCCT) to prevent metal contaminant effects // Ind. Eng. Chem. Res. 1993. V. 32, № 6. P. 1071–1080. https://doi.org/10.1021/ie00018a013
- Wallenstein D., Kanz B., Haas A. Influence of coke deactivation and vanadium and nickel contamination on the performance of low ZSM‑5 levels in FCC catalysts // Appl. Catal. A: Gen. 2000. V. 192, № 1. P. 105–123. https://doi.org/10.1016/S0926-860X(99)00334-8
Supplementary files
