Composition and structure of asphaltenes and resins isolated from vacuum residue exposed to combined thermo- and hydrocracking process in suspension phase
- Authors: Yakubov M.R.1, Khramov A.A.2, Idrisov M.R.2, Borisova Y.Y.1, Borisov D.N.1, Yakubova S.G.1, Tazeeva E.G.1, Tazeev D.I.1
-
Affiliations:
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
- JSC "TAIF-NK"
- Issue: Vol 65, No 2 (2025)
- Pages: 106-115
- Section: Articles
- URL: https://bakhtiniada.ru/0028-2421/article/view/286193
- DOI: https://doi.org/10.31857/S0028242125020036
- EDN: https://elibrary.ru/KLVDLZ
- ID: 286193
Cite item
Abstract
The composition of asphaltenes and resins of concentrated product of hydrocracked vacuum residue (CPHVR) obtained by the technology of combined thermal and hydrocracking in a suspension phase has been studied for the first time. The asphaltene content in CPHVR is 48.6 wt.%, and the resin content is 14.3 wt.%. Comparative analysis of asphaltenes and resins of CPHVR by IR spectroscopy, MALDI mass spectrometry, elemental analysis, TGA, EPR and AAS allowed us to compare their composition and structure with the corresponding components in the initial vacuum residue. It was shown that asphaltenes and resins of CPHVR differ from the corresponding components of the initial vacuum residue by a lower molecular weight, a higher proportion of aromatic and condensed structures and a more than 30-fold reduced content of vanadium and nickel. The obtained results suggest that the composition of asphaltenes and resins of CPHVR mainly contains new components formed due to polycondensation, as well as certain polyaromatic structures that cannot be converted into distillates under hydrocracking conditions.
Full Text

About the authors
Makhmut R. Yakubov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: yakubovmr@mail.ru
ORCID iD: 0000-0003-0504-5569
доктор химических наук, доцент, заместитель руководителя по научной работе, заведующий лабораторией Переработка нефти и природных битумов
Russian Federation, Kazan, 420088 TatarstanAlexey A. Khramov
JSC "TAIF-NK"
Email: Hramov_Aleks@mail.ru
ORCID iD: 0009-0003-8870-0457
Russian Federation, Nizhnekamsk, 423574 Tatarstan
Marat R. Idrisov
JSC "TAIF-NK"
Email: idrisovmarat@gmail.com
ORCID iD: 0000-0002-0997-2872
Russian Federation, Nizhnekamsk, 423574 Tatarstan
Yulia Yu. Borisova
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: uborisova@gmail.com
ORCID iD: 0000-0003-1677-3668
кандидат химических наук, старший научный сотрудник лаборатории физикохимии высокомолекулярных нефтяных компонентов
Russian Federation, Kazan, 420088 TatarstanDmitry N. Borisov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: boriku@gmail.com
ORCID iD: 0000-0002-3755-7764
кандидат химических наук, руководитель лаборатории физикохимии высокомолекулярных нефтяных компонентов
Russian Federation, Kazan, 420088 TatarstanSvetlana G. Yakubova
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: yakubovasg@mail.ru
ORCID iD: 0000-0002-2845-2573
кандидат химических наук, старший научный сотрудник лаборатории переработки нефти и природных битумов
Russian Federation, Kazan, 420088 TatarstanElvira G. Tazeeva
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: tazeeva_elvira@mail.ru
ORCID iD: 0000-0002-6419-708X
младший научный сотрудник лаборатории переработки нефти и природных битумов
Russian Federation, Kazan, 420088 TatarstanDamir I. Tazeev
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Author for correspondence.
Email: tazeevexc4@yahoo.com
ORCID iD: 0000-0002-7074-6508
кандидат химических наук, младший научный сотрудник лаборатории переработки нефти и природных битумов
Russian Federation, Kazan, 420088 TatarstanReferences
- Максимов А.Л., Зекель Л.А., Кадиева М.Х., Гюльмалиев А.М., Дандаев А.У., Батов А.Е., Висалиев М.Я., Кадиев Х.М. Оценка активности дисперсных катализаторов в реакциях гидрокрекинга углеводородного сырья // Нефтехимия. 2019. Т. 59, № 5. С. 516–523. https://doi.org/10.1134/S0028242119050101 [Maksimov A.L., Zekel L.A., Kadieva M.K., Gulmaliev A.M., Dandaev A.U., Batov A.E., Visaliev M.Y., Kadiev K.M. Assessment of the activity of dispersed catalyst in hydrocracking reactions of hydrocarbonaceous feedstock // Petrol. Chem. 2019. V. 59, № 9. P. 968–974. https://doi.org/10.1134/S096554411909010X]
- Окунев А.Г., Пархомчук Е.В., Лысиков А.И., Парунин П.Д., Семейкина В.С., Пармон В.Н. Каталитическая гидропереработка тяжелого нефтяного сырья // Успехи химии. 2015. Т. 84, № 9. С. 981–999. https://doi.org/10.1070/RCR4486 [Okunev A.G., Parkhomchuk E.V., Lysikov A.I., Parunin P.D., Semeykina V.S., Parmon V.N. Catalytic hydroprocessing of heavy oil feedstocks // Russ. Chem. Rev. V. 84, № 9. P. 991–999. https://doi.org/10.1070/RCR4486]
- Pham D.V., Nguyen N.T., Kang K.H., Seo P.W., Yun D., Phan P.D., Park Y.K., Park S. Comparative study of single- and two-stage slurry-phase catalytic hydrocracking of vacuum residue for selective conversion of heavy oil // Catalysis Today. 2024. V. 426. ID114391. https://doi.org/10.1016/j.cattod.2023.114391
- Al-Attas T.A., Ali S.A., Zahir M.H., Xiong Q., AlBogami S.A., Malaibari Z.O., Razzak S.A., Hossain M.M. Recent advances in heavy oil upgrading using dispersed catalysts // Energy Fuels. 2019. V. 33, № 9. P. 7917–7949. https://doi.org/10.1021/acs.energyfuels.9b01532
- Prajapati R., Kohli K., Maity S.K. Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: An experimental review // Fuel. 2021. V. 288. ID119686. https://doi.org/10.1016/j.fuel.2020.119686
- Sahu R., Song B.J., Im J.S., Jeon Y.P., Lee C.W. A review of recent advances in catalytic hydrocracking of heavy residues // J. Ind. Eng. Chem. 2015. V. 27. P. 12–24. https://doi.org/10.1016/j.jiec.2015.01.011
- Kapustin V., Chernysheva E., Khakimov R. Comparison of moving-bed catalytic tar hydrocracking processes // Processes. 2021. V. 9, № 3. ID500. https://doi.org/10.3390/pr9030500
- Konovnin A.A., Presnyakov V.V., Shigabutdinov R.A., Akhunov R.N., Idrisov M.R., Novikov M.A., Khramov A.A., Urazaikin A.S., Shigabutdinov A.K. Deep processing of heavy resids based on TAIF-NK JSC heavy residue conversion complex // Chem. Technol. Fuels Oils. 2023. V. 59, № 1. P. 1–6. https://doi.org/10.1007/s10553-023-01493-w
- Khramov A.A., Idrisov M.R., Presnyakov V.V., Shigabutdinov R.A., Akhunov R.N., Novikov M.A., Konovnin A.A., Urazaikin A.S., Shigabutdinov A.K. Methods of conversion of residual product of combined thermo- and hydrocracking of heavy resid // Chem. Technol. Fuels Oils. 2023. V. 59, № 1. P. 17–21. https://doi.org/10.1007/s10553-023-01496-7
- Chacón-Patiño M.L., Blanco-Tirado C., Orrego-Ruiz J.A., Gómez-Escudero A., Combariza M.Y. Tracing the compositional changes of asphaltenes after hydroconversion and thermal cracking processes by high-resolution mass spectrometry // Energy Fuels. V. 29, № 10. P. 6330–6341. https://doi.org/10.1021/acs.energyfuels.5b01510
- Nguyen M.T., Nguyen D.L.T., Xia C., Nguyen T.B., Shokouhimehr M., Sana S.S., Grace A.N., Aghbashlo M., Tabatabaei M., Sonne C., Kim S.-Y., Lam S.S., Le V.Q. Recent advances in asphaltene transformation in heavy oil hydroprocessing: Progress, challenges, and future perspectives // Fuel Processing Technology. 2021. V. 213. ID106681. https://doi.org/10.1016/j.fuproc.2020.106681
- Liu D., Li Z., Fu Y., Zhang Y., Gao P., Dai C., Zheng K. Investigation on asphaltene structures during Venezuela heavy oil hydrocracking under various hydrogen pressures // Energy Fuels. 2013. V. 7. P. 3692–3698. https://doi.org/10.1021/ef4003999
- Sun Y.D., Yang C.H., Zhao H., Shan H.H., Shen B.X. Influence of asphaltene on the residue hydrotreating reaction // Energy Fuels. 2010. V. 24, № 9. P. 5008–5011. https://doi.org/10.1021/ef1005385
- Nguyen N.T., Kang K.H., Pham H.H., Go K.S., Van Pham D., Seo P.W., Nho N.S., Lee C., Park S. Catalytic hydrocracking of vacuum residue in a semi-batch reactor: Effect of catalyst concentration on asphaltene conversion and product distribution // J. Ind. Eng. Chem. 2021. V. 102. P. 112–121. https://doi.org/10.1016/j.jiec.2021.06.033
- Pham H.H., Nguyen N.T., Go K.S., Park S., Nho N.S., Kim G.T., Lee C.W., Felix G. Kinetic study of thermal and catalytic hydrocracking of asphaltene // Catalysis Today. 2020. V. 353. P. 112–118. https://doi.org/10.1016/j.cattod.2019.08.031
- Ancheyta J., Trejo F., Rana M.S. Asphaltenes: chemical transformation during hydroprocessing of heavy oils. CRC Press, 2010. 461 p. https://doi.org/10.1201/9781420066319
- Ok S., Samuel J., Bahzad D., Safa M.A., Hejazi M.A., Trabzon L. The asphaltenes: state-of-the-art applications and future perspectives in materials science // Energy Fuels. 2024. V. 38, № 12. P. 10421–10444. https://doi.org/10.1021/acs.energyfuels.4c00060
- Kamkar M., Natale G. A review on novel applications of asphaltenes: A valuable waste // Fuel. 2021. V. 285. ID119272. https://doi.org/10.1016/j.fuel.2020.119272
- Enayat S., Tran M.K., Salpekar D., Kabbani M.A., Babu G., Ajayan P.M., Vargas F.M. From crude oil production nuisance to promising energy storage material: Development of high-performance asphaltene-derived supercapacitors // Fuel. 2020. V. 263. ID116641. https://doi.org/10.1016/j.fuel.2019.116641
- Borisova Y.Y., Minzagirova A.M., Galikhanov M.F., Zaripov R.B., Spiridonova R.R., Yakubov M.R., Borisov D.N. Potential of industrial symbiosis of petroleum residues and recycled polyethylene // Petrol. Sci. Technol. 2024. P. 1–18. https://doi.org/10.1080/10916466.2024.2353279
- Borisova Y.Y., Minzagirova A.M., Gilmanova A.R., Galikhanov M.F., Borisov D.N., Yakubov M.R. Heavy oil residues: application as a low-cost filler in polymeric materials // Civil Engineering J. 2019. V. 5, № 12. P. 2554–2568. http://doi.org/10.28991/cej-2019-03091432
- Pripakhaylo A.V., Tsypakin A.A., Klam A.A., Andreichev A.L., Timerbaev A.R., Shapovalova O.V., Magomedov R.N. Polyacrylonitrile composites blended with asphalt as a low-cost material for producing synthetic fibers: rheology and thermal stability // Materials. 2024. V. 17, № 23. P. 5725. https://doi.org/10.3390/ma17235725
- Борисова Ю.Ю., Мусин Л.И., Борисов Д.Н., Якубов М.Р. Экстракционное выделение высококонденсированных полиароматических компонентов из нефтяных асфальтенов // Нефтехимия. 2021. Т. 61, № 3. С. 311–318. https://doi.org/10.31857/S0028242121030023 [Borisova Y.Y., Musin L.I., Borisov D.N., Yakubov M.R. Extraction of highly condensed polyaromatic components from petroleum asphaltenes // Petrol. Chem. 2021. V. 61. P. 424–430. https://doi.org/10.1134/S0965544121050029]
- Borisova Y.Y., Tazeeva E.G., Mironov N.A., Borisov D.N., Yakubova S.G., Abilova G.R., Sinyashin K.O., Yakubov M.R. Role of vanadylporphyrins in the flocculation and sedimentation of asphaltenes of heavy oils with high vanadium content // Energy Fuels. 2017. V. 31, № 12. P. 13382–13391. https://doi.org/10.1021/acs.energyfuels.7b02544
- Кадиев Х.М., Зекель Л.А., Кадиева М.Х., Гюльмалиев А.М., Батов А.Е., Висалиев М.Я., Дандаева А.У., Магамодов Э.Э., Кубрин Н.А. Поведение ванадия и никеля при гидроконверсии гудрона в присутствии суспензий наноразмерных катализаторов // Нефтехимия. 2020. Т. 60, № 5. С. 619–629. https://doi.org/10.31857/S0028242120050135 [Kadiev K.M., Zekel L.A., Kadieva M.K., Gulmaliev A.M., Batov A.E., Visaliev M.Y., Dandaev A.U., Magamadov E.E., Kubrin N.A. Behavior of vanadium and nickel in hydroconversion of vacuum tower bottoms over nanosized slurry catalysts // Petrol. Chem. 2020. V. 60, № 9. P. 1009–1018. https://doi.org/10.1134/S0965544120090133]
- Якубов М.Р., Синяшин К.О., Абилова Г.Р., Тазеева Э.Г., Милордов Д.В., Якубова С.Г., Борисов Д.Н., Грязнов П.И., Миронов Н.А., Борисова Ю.Ю. Дифференциация тяжелых нефтей по содержанию ванадия и никеля в асфальтенах и смолах // Нефтехимия. 2017. Т. 57, № 5. С. 525–531. https://doi.org/10.7868/S0028242117050197 [Yakubov M.R., Sinyashin K.O., Abilova G.R., Tazeeva E.G., Milordov D.V., Yakubova S.G., Borisov D.N., Gryaznov P.I., Mironov N.A., Borisova Y.Y. Differentiation of heavy oils according to the vanadium and nickel content in asphaltenes and resins // Petrol. Chem. 2017. V. 57, № 10. P. 849–854. https://doi.org/10.1134/S096554411710019X]
- Hernández M.S., Coll D.S., Silva P.J. Temperature dependence of the electron paramagnetic resonance spectrum of asphaltenes from Venezuelan crude oils and their vacuum residues // Energy Fuels. 2019. V. 33, № 2. P. 990–997. https://doi.org/10.1021/acs.energyfuels.8b03951
- Мартьянов О.Н., Ларичев Ю.В., Морозов Е.В., Трухан С.Н., Казарян С.Г. Развитие и применение современных методов in situ для исследования стабильности нефтяных систем и физико-химических процессов в них // Успехи химии. 2017. Т. 86, № 11. С. 999–1023. https://doi.org/10.1070/RCR4742
- Rueda-Velásquez R.I., Freund H., Qian K., Olmstead W.N., Gray M.R. Characterization of asphaltene building blocks by cracking under favorable hydrogenation conditions // Energy Fuels. 2013. V. 27, № 4. P. 1817–1829. https://doi.org/10.1021/ef301521q
- León A.Y., Guzman A., Laverde D., Chaudhari R.V., Subramaniam B., Bravo-Suárez J.J. Thermal cracking and catalytic hydrocracking of a Colombian vacuum residue and its maltenes and asphaltenes fractions in toluene // Energy Fuels. 2017. V. 31, № 4. P. 3868–3877. https://doi.org/10.1021/acs.energyfuels.7b00078
Supplementary files
