In silico screening of protein-protein interaction modulators using the P53 and 14-3-3γ proteins as an example

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The study of the p53 protein and its interactions with other proteins is key to understanding the mechanisms by which p53 affects tumorigenesis. Mutations in the TP53 gene, which occur in approximately 50% of human cancers, often disrupt its function, highlighting its key role in tumorigenesis. Although structurally challenging due to the presence of unstructured regions, p53 has a well-documented role in DNA damage signaling and cancer progression. In this study, the interaction between p53 and 14-3-3γ monomers was studied using in silico methods. Using tertiary structure modeling, molecular dynamics, molecular docking, and virtual ligand screening, we identified small molecule compounds that can modulate the interaction of p53 with 14-3-3γ. Key findings of the study include identification of a ligand binding pocket in the p53–14-3-3γ interaction interface, generation of full-length models of 14-3-3γ and p53 using in silico methods, and selection of potential protein-protein modulators with high affinity for the proteins under study.

作者简介

A. Sargsyan

Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA); Russian-Armenian University

Email: g_arakelov@mb.sci.am
亚美尼亚, Yerevan, 0014; Yerevan, 0051

N. Muradyan

Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA)

Email: g_arakelov@mb.sci.am
亚美尼亚, Yerevan, 0014

V. Arakelov

Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA)

Email: g_arakelov@mb.sci.am
亚美尼亚, Yerevan, 0014

A. Paronyan

Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA); Russian-Armenian University

Email: g_arakelov@mb.sci.am
亚美尼亚, Yerevan, 0014; Yerevan, 0051

G. Arakelov

Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA); Russian-Armenian University

Email: g_arakelov@mb.sci.am
亚美尼亚, Yerevan, 0014; Yerevan, 0051

K. Nazaryan

Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA); Russian-Armenian University

编辑信件的主要联系方式.
Email: g_arakelov@mb.sci.am
亚美尼亚, Yerevan, 0014; Yerevan, 0051

参考

  1. Gotz C., Montenarh M. (1995) P53 and its implication in apoptosis (review). Int. J. Oncol. 6(5), 1129–1135. https://doi.org/10.3892/ijo.6.5.1129
  2. Bode A.M., Dong Z. (2004) Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer. 4(10), 793–805. https://doi.org/10.1038/nrc1455
  3. Baugh E.H., Ke H., Levine A.J., Bonneau R.A., Chan C.S. (2018) Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25(1), 154–160. https://doi.org/10.1038/cdd.2017.180
  4. McKinney K., Mattia M., Gottifredi V., Prives C. (2004) p53 linear diffusion along DNA requires its C terminus. Mol. Cell. 16(3), 413–424. https://doi.org/10.1016/j.molcel.2004.09.032
  5. Joerger A.C., Fersht A.R. (2008) Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 77, 557–582. https://doi.org/10.1146/annurev.biochem.77.060806.
  6. Friedler A., Veprintsev D.B., Freund S.M., von Glos K.I., Fersht A.R. (2005) Modulation of binding of DNA to the C-terminal domain of p53 by acetylation. Structure. 13(4), 629–636. https://doi.org/10.1016/j.str.2005.01.020
  7. Kuusk A., Boyd H., Chen H., Ottmann C. (2020) Small-molecule modulation of p53 protein-protein interactions. Biol. Chem. 401(8), 921–931. https://doi.org/10.1515/hsz-2019-0405
  8. Moore B.W., Perez V.J., Gehring M. (1968) Assay and regional distribution of a soluble protein characteristic of the nervous system. J. Neurochem. 15, 265–272. https://doi.org/10.1111/j.1471-4159.1968.tb11610.x
  9. Fu H., Subramanian R.R., Masters S.C. (2000) 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617–647. https://doi.org/10.1146/annurev.pharmtox.40.1.617
  10. Yang X., Lee W.H., Sobott F., Papagrigoriou E., Robinson C.V., Grossmann J.G., Sundström M., Doyle D.A., Elkins J.M. (2006) Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. USA. 103(46), 17237–17242. https://doi.org/10.1073/pnas.0605779103
  11. Lee M.H., Lozano G. (2006) Regulation of the p53-MDM2 pathway by 14-3-3σ and other proteins. Semin. Cancer Biol. 16(3), 225–234. https://doi.org/10.1016/j.semcancer.2006.03.009
  12. Ginalski K. (2006) Comparative modeling for protein structure prediction. Curr. Opin. Struct. Biol. 16(2), 172–177. https://doi.org/10.1016/j.sbi.2006.02.003
  13. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior AW., Kavukcuoglu K., Kohli P., Hassabis D. (2021) Highly accurate protein structure prediction with AlphaFold. Nature. 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  14. Evans R., O’Neill M., Pritzel A., Antropova N., Senior A., Green T., Žídek A., Bates R., Blackwell S., Yim J., Ronneberger O., Bodenstein S., Zielinski M., Bridgland A., Potapenko A., Cowie A., Tunyasuvunakool K., Jain R., Clancy E., Kohli P., Jumper J., Hassabis D. (2022) Protein complex prediction with AlphaFold-Multimer. bioRxiv. https://doi.org/10.1101/2021.10.04.463034
  15. Izadi S., Anandakrishnan R., Onufriev A.V. (2014) Building water models: a different approach. J. Phys. Chem. Lett. 5(21), 3863–3871. https://doi.org/10.1021/jz501780a
  16. Raguette L.E., Cuomo A.E., Belfon K.A.A., Tian C., Hazoglou V., Witek G., Telehany S.M., Wu Q., Simmerling C. (2024) phosaa14SB and phosaa19SB: updated Amber force field parameters for phosphorylated amino acids. J. Chem. Theory Comput. 20(16), 7199–7209. https://doi.org/10.1021/acs.jctc.4c00732
  17. Tian C., Kasavajhala K., Belfon K.A.A., Raguette L., Huang H., Migues A.N., Bickel J., Wang Y., Pincay J., Wu Q., Simmerling C. (2020) ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 16(1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591
  18. Kumari R., Kumar R., Open Source Drug Discovery Consortium, Lynn A. (2014) g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  19. Massova I., Kollman P.A. (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect. Drug Discov. Des. 18(1), 113–135. https://doi.org/10.1023/A:1008763014207
  20. Tubiana T., Carvaillo J.C., Boulard Y., Bressanelli S. (2018) TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries. J. Chem. Inf. Model. 58(11), 2178–2182. https://doi.org/10.1021/acs.jcim.8b00512
  21. Abagyan R., Totrov M. (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J. Mol. Biol. 235(3), 983–1002. https://doi.org/10.1006/jmbi.1994.1052
  22. Hainaut P., Mann K. (2001) Zinc binding and redox control of p53 structure and function. Antioxid. Redox Signal. 3(4), 611–623. https://doi.org/10.1089/15230860152542961
  23. Falcicchio M., Ward J.A., Macip S., Doveston R.G. (2020) Regulation of p53 by the 14-3-3 protein interaction network: new opportunities for drug discovery in cancer. Cell Death Discov. 6(1), 126. https://doi.org/10.1038/s41420-020-00362-3

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».