In silico screening of protein-protein interaction modulators using the P53 and 14-3-3γ proteins as an example
- 作者: Sargsyan A.A.1,2, Muradyan N.G.1, Arakelov V.G.1, Paronyan A.K.1,2, Arakelov G.G.1,2, Nazaryan K.B.1,2
-
隶属关系:
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA)
- Russian-Armenian University
- 期: 卷 59, 编号 3 (2025)
- 页面: 505-514
- 栏目: СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ БИОПОЛИМЕРОВИ ИХ КОМПЛЕКСОВ
- URL: https://bakhtiniada.ru/0026-8984/article/view/306408
- DOI: https://doi.org/10.31857/S0026898425030111
- EDN: https://elibrary.ru/pvbpjy
- ID: 306408
如何引用文章
详细
The study of the p53 protein and its interactions with other proteins is key to understanding the mechanisms by which p53 affects tumorigenesis. Mutations in the TP53 gene, which occur in approximately 50% of human cancers, often disrupt its function, highlighting its key role in tumorigenesis. Although structurally challenging due to the presence of unstructured regions, p53 has a well-documented role in DNA damage signaling and cancer progression. In this study, the interaction between p53 and 14-3-3γ monomers was studied using in silico methods. Using tertiary structure modeling, molecular dynamics, molecular docking, and virtual ligand screening, we identified small molecule compounds that can modulate the interaction of p53 with 14-3-3γ. Key findings of the study include identification of a ligand binding pocket in the p53–14-3-3γ interaction interface, generation of full-length models of 14-3-3γ and p53 using in silico methods, and selection of potential protein-protein modulators with high affinity for the proteins under study.
作者简介
A. Sargsyan
Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA); Russian-Armenian University
Email: g_arakelov@mb.sci.am
亚美尼亚, Yerevan, 0014; Yerevan, 0051
N. Muradyan
Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA)
Email: g_arakelov@mb.sci.am
亚美尼亚, Yerevan, 0014
V. Arakelov
Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA)
Email: g_arakelov@mb.sci.am
亚美尼亚, Yerevan, 0014
A. Paronyan
Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA); Russian-Armenian University
Email: g_arakelov@mb.sci.am
亚美尼亚, Yerevan, 0014; Yerevan, 0051
G. Arakelov
Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA); Russian-Armenian University
Email: g_arakelov@mb.sci.am
亚美尼亚, Yerevan, 0014; Yerevan, 0051
K. Nazaryan
Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA); Russian-Armenian University
编辑信件的主要联系方式.
Email: g_arakelov@mb.sci.am
亚美尼亚, Yerevan, 0014; Yerevan, 0051
参考
- Gotz C., Montenarh M. (1995) P53 and its implication in apoptosis (review). Int. J. Oncol. 6(5), 1129–1135. https://doi.org/10.3892/ijo.6.5.1129
- Bode A.M., Dong Z. (2004) Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer. 4(10), 793–805. https://doi.org/10.1038/nrc1455
- Baugh E.H., Ke H., Levine A.J., Bonneau R.A., Chan C.S. (2018) Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25(1), 154–160. https://doi.org/10.1038/cdd.2017.180
- McKinney K., Mattia M., Gottifredi V., Prives C. (2004) p53 linear diffusion along DNA requires its C terminus. Mol. Cell. 16(3), 413–424. https://doi.org/10.1016/j.molcel.2004.09.032
- Joerger A.C., Fersht A.R. (2008) Structural biology of the tumor suppressor p53. Annu. Rev. Biochem. 77, 557–582. https://doi.org/10.1146/annurev.biochem.77.060806.
- Friedler A., Veprintsev D.B., Freund S.M., von Glos K.I., Fersht A.R. (2005) Modulation of binding of DNA to the C-terminal domain of p53 by acetylation. Structure. 13(4), 629–636. https://doi.org/10.1016/j.str.2005.01.020
- Kuusk A., Boyd H., Chen H., Ottmann C. (2020) Small-molecule modulation of p53 protein-protein interactions. Biol. Chem. 401(8), 921–931. https://doi.org/10.1515/hsz-2019-0405
- Moore B.W., Perez V.J., Gehring M. (1968) Assay and regional distribution of a soluble protein characteristic of the nervous system. J. Neurochem. 15, 265–272. https://doi.org/10.1111/j.1471-4159.1968.tb11610.x
- Fu H., Subramanian R.R., Masters S.C. (2000) 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617–647. https://doi.org/10.1146/annurev.pharmtox.40.1.617
- Yang X., Lee W.H., Sobott F., Papagrigoriou E., Robinson C.V., Grossmann J.G., Sundström M., Doyle D.A., Elkins J.M. (2006) Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. USA. 103(46), 17237–17242. https://doi.org/10.1073/pnas.0605779103
- Lee M.H., Lozano G. (2006) Regulation of the p53-MDM2 pathway by 14-3-3σ and other proteins. Semin. Cancer Biol. 16(3), 225–234. https://doi.org/10.1016/j.semcancer.2006.03.009
- Ginalski K. (2006) Comparative modeling for protein structure prediction. Curr. Opin. Struct. Biol. 16(2), 172–177. https://doi.org/10.1016/j.sbi.2006.02.003
- Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior AW., Kavukcuoglu K., Kohli P., Hassabis D. (2021) Highly accurate protein structure prediction with AlphaFold. Nature. 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
- Evans R., O’Neill M., Pritzel A., Antropova N., Senior A., Green T., Žídek A., Bates R., Blackwell S., Yim J., Ronneberger O., Bodenstein S., Zielinski M., Bridgland A., Potapenko A., Cowie A., Tunyasuvunakool K., Jain R., Clancy E., Kohli P., Jumper J., Hassabis D. (2022) Protein complex prediction with AlphaFold-Multimer. bioRxiv. https://doi.org/10.1101/2021.10.04.463034
- Izadi S., Anandakrishnan R., Onufriev A.V. (2014) Building water models: a different approach. J. Phys. Chem. Lett. 5(21), 3863–3871. https://doi.org/10.1021/jz501780a
- Raguette L.E., Cuomo A.E., Belfon K.A.A., Tian C., Hazoglou V., Witek G., Telehany S.M., Wu Q., Simmerling C. (2024) phosaa14SB and phosaa19SB: updated Amber force field parameters for phosphorylated amino acids. J. Chem. Theory Comput. 20(16), 7199–7209. https://doi.org/10.1021/acs.jctc.4c00732
- Tian C., Kasavajhala K., Belfon K.A.A., Raguette L., Huang H., Migues A.N., Bickel J., Wang Y., Pincay J., Wu Q., Simmerling C. (2020) ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 16(1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591
- Kumari R., Kumar R., Open Source Drug Discovery Consortium, Lynn A. (2014) g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
- Massova I., Kollman P.A. (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect. Drug Discov. Des. 18(1), 113–135. https://doi.org/10.1023/A:1008763014207
- Tubiana T., Carvaillo J.C., Boulard Y., Bressanelli S. (2018) TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries. J. Chem. Inf. Model. 58(11), 2178–2182. https://doi.org/10.1021/acs.jcim.8b00512
- Abagyan R., Totrov M. (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins. J. Mol. Biol. 235(3), 983–1002. https://doi.org/10.1006/jmbi.1994.1052
- Hainaut P., Mann K. (2001) Zinc binding and redox control of p53 structure and function. Antioxid. Redox Signal. 3(4), 611–623. https://doi.org/10.1089/15230860152542961
- Falcicchio M., Ward J.A., Macip S., Doveston R.G. (2020) Regulation of p53 by the 14-3-3 protein interaction network: new opportunities for drug discovery in cancer. Cell Death Discov. 6(1), 126. https://doi.org/10.1038/s41420-020-00362-3
补充文件
