Tick-borne encephalitis virus NS1 protein and extracellular vesicles from NS1-expressing cells: effect on innate immune response gene expression in neuroblastoma and glioblastoma cells

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Infection with tick-borne encephalitis virus (TBEV) can lead to severe neurological complications, largely associated with the activation of innate immunity and inflammatory reactions in the tissues of the nervous system. In this regard, the study of factors, including viral factors, influencing these processes is underway. We analyzed the possible role of non-structural protein 1 (NS1) of TBEV in the activation of innate immune response reactions in cells of the nervous system. SH-SY5Y neuroblastoma and DBTRG-05MG glioblastoma cells were transfected with a plasmid encoding NS1 or treated with extracellular vesicles of NS1-expressing HEK293T cells and then stimulated with polyinosinic-polycytidylic acid [poly(I:C)] to activate the innate immune response. It was found that poly(I:C) stimulation of NS1-expressing SH-SY5Y cells resulted in lower mRNA levels of the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well as the innate immune response cytokine interferon-β (IFN-β) and interferon-stimulated gene 15 product (ISG15), compared to stimulated cells without NS1 expression. In addition, transcription of the sensor gene MDA5, which is responsible for activating gene transcription of these cytokines, was reduced in these cells. In NS1-expressing DBTRG-05MG stimulated cells, only IL-1β mRNA content was reduced. Treatment of SH-SY5Y cells with extracellular vesicles from NS1-expressing cells followed by poly(I:C) stimulation resulted in increased mRNA levels of IL-6, TNF-α, and IFN-β, compared with stimulated cells treated with vesicles from non-NS1-expressing cells. No differences were detected in DBTRG-05MG cells with similar treatment. Based on these data, we can assume that TBEV NS1 plays a dual role in the formation of neuroinflammation during the infection, and consider this protein as a potential therapeutic target.

作者简介

Y. Kuzmenko

Engelhardt Institute of Molecular Biology

Email: estarodubova@yandex.ru
俄罗斯联邦, Moscow, 119991

A. Latanova

Engelhardt Institute of Molecular Biology

Email: estarodubova@yandex.ru
俄罗斯联邦, Moscow, 119991

V. Karpov

Engelhardt Institute of Molecular Biology

Email: estarodubova@yandex.ru
俄罗斯联邦, Moscow, 119991

E. Starodubova

Engelhardt Institute of Molecular Biology

编辑信件的主要联系方式.
Email: estarodubova@yandex.ru
俄罗斯联邦, Moscow, 119991

参考

  1. Chiffi G., Grandgirard D., Leib S.L., Chrdle A., Růžek D. (2023) Tick-borne encephalitis: a comprehensive review of the epidemiology, virology, and clinical picture. Rev. Med. Virol. 33, e2470.
  2. Taba P., Schmutzhard E., Forsberg P., Lutsar I., Ljøstad U., Mygland Å., Levchenko I., Strle F., Steiner I. (2017) EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis. Eur. J. Neurol. 24, 1214-e61.
  3. Selinger M., Věchtová P., Tykalová H., Ošlejšková P., Rumlová M., Štěrba J., Grubhoffer L. (2022) Integrative RNA profiling of TBEV-infected neurons and astrocytes reveals potential pathogenic effectors. Comput. Struct. Biotechnol. J. 20, 2759–2777.
  4. Fares M., Cochet-Bernoin M., Gonzalez G., Montero-Menei C.N., Blanchet O., Benchoua A., Boissart C., Lecollinet S., Richardson J., Haddad N., Coulpier M. (2020) Pathological modeling of TBEV infection reveals differential innate immune responses in human neurons and astrocytes that correlate with their susceptibility to infection. J. Neuroinflammation. 17, 76.
  5. Bogovič P., Lusa L., Korva M., Pavletič M., Resman Rus K., Lotrič-Furlan S., Avšič-Županc T., Strle K., Strle F. (2019) Inflammatory immune responses in the pathogenesis of tick-borne encephalitis. J. Clin. Med. 8, 731.
  6. Palus M., Formanová P., Salát J., Žampachová E., Elsterová J., Růžek D. (2015) Analysis of serum levels of cytokines, chemokines, growth factors, and monoamine neurotransmitters in patients with tick-borne encephalitis: identification of novel inflammatory markers with implications for pathogenesis. J. Med. Virol. 87, 885–892.
  7. Zidovec-Lepej S., Vilibic-Cavlek T., Ilic M., Gorenec L., Grgic I., Bogdanic M., Radmanic L., Ferenc T., Sabadi D., Savic V., Hruskar Z., Svitek L., Stevanovic V., Peric L., Lisnjic D., Lakoseljac D., Roncevic D., Barbic L. (2022) Quantification of antiviral cytokines in serum, cerebrospinal fluid and urine of patients with tick-borne encephalitis in croatia. Vaccines. 10, 1825.
  8. Palus M., Bílý T., Elsterová J., Langhansová H., Salát J., Vancová M., Růžek D. (2014) Infection and injury of human astrocytes by tick-borne encephalitis virus. J. Gen. Virol. 95, 2411–2426.
  9. Bogovič P., Lusa L., Korva M., Lotrič-Furlan S., Resman-Rus K., Pavletič M., Avšič-Županc T., Strle K., Strle F. (2019) Inflammatory immune responses in patients with tick-borne encephalitis: dynamics and association with the outcome of the disease. Microorganisms. 7, 514.
  10. Atrasheuskaya A.V., Fredeking T.M., Ignatyev G.M. (2003) Changes in immune parameters and their correction in human cases of tick-borne encephalitis. Clin. Exp. Immunol. 131, 148–154.
  11. Selinger M., Wilkie G.S., Tong L., Gu Q., Schnettler E., Grubhoffer L., Kohl A. (2017) Analysis of tick-borne encephalitis virus-induced host responses in human cells of neuronal origin and interferon-mediated protection. J. Gen. Virol. 98, 2043–2060.
  12. Lindqvist R., Mundt F., Gilthorpe J.D., Wölfel S., Gekara N.O., Kröger A., Överby A.K. (2016) Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects. J. Neuroinflammation. 13, 277.
  13. Weber E., Finsterbusch K., Lindquist R., Nair S., Lienenklaus S., Gekara N.O., Janik D., Weiss S., Kalinke U., Överby A.K., Kröger A. (2014) Type I interferon protects mice from fatal neurotropic infection with Langat virus by systemic and local antiviral responses. J. Virol. 88, 12202–12212.
  14. Glasner D.R., Puerta-Guardo H., Beatty P.R., Harris E. (2018) The good, the bad, and the shocking: the multiple roles of dengue virus nonstructural protein 1 in protection and pathogenesis. Annu. Rev. Virol. 5, 227–253.
  15. Chen H.-R., Lai Y.-C., Yeh T.-M. (2018) Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J. Biomed. Sci. 25, 58.
  16. Rastogi M., Sharma N., Singh S.K. (2016) Flavivirus NS1: a multifaceted enigmatic viral protein. Virol. J. 13, 131.
  17. Crooks A.J., Lee J.M., Easterbrook L.M., Timofeev A.V., Stephenson J.R. (1994) The NS1 protein of tick-borne encephalitis virus forms multimeric species upon secretion from the host cell. J. Gen. Virol. 75(Pt 12), 3453–3460.
  18. Carpio K.L., Barrett A.D.T. (2021) Flavivirus NS1 and its potential in vaccine development. Vaccines. 9, 622.
  19. Starodubova E., Tuchynskaya K., Kuzmenko Y., Latanova A., Tutyaeva V., Karpov V., Karganova G. (2023) Activation of early proinflammatory responses by TBEV NS1 varies between the strains of various subtypes. Int. J. Mol. Sci. 24, 1011.
  20. Latanova A., Karpov V., Starodubova E. (2024) Extracellular vesicles in Flaviviridae pathogenesis: their roles in viral transmission, immune evasion, and inflammation. Int. J. Mol. Sci. 25, 2144.
  21. Zhou W., Woodson M., Neupane B., Bai F., Sherman M.B., Choi K.H., Neelakanta G., Sultana H. (2018) Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog. 14, e1006764.
  22. Breitkopf V.J.M., Dobler G., Claus P., Naim H.Y., Steffen I. (2021) IRE1-mediated unfolded protein response promotes the replication of tick-borne flaviviruses in a virus and cell-type dependent manner. Viruses. 13, 2164.
  23. Frey S., Mossbrugger I., Altantuul D., Battsetseg J., Davaadorj R., Tserennorov D., Buyanjargal T., Otgonbaatar D., Zöller L., Speck S., Wölfel R., Dobler G., Essbauer S. (2012) Isolation, preliminary characterization, and full-genome analyses of tick-borne encephalitis virus from Mongolia. Virus Genes. 45, 413–425.
  24. Lindqvist R., Upadhyay A., Överby A.K. (2018) Tick-borne flaviviruses and the type I interferon response. Viruses. 10, 340.
  25. Goonawardane N., Upstone L., Harris M., Jones I.M. (2022) Identification of host factors differentially induced by clinically diverse strains of tick-borne encephalitis virus. J. Virol. 96, e0081822.
  26. Overby A.K., Popov V.L., Niedrig M., Weber F. (2010) Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles. J. Virol. 84, 8470–8483.
  27. Mlera L., Lam J., Offerdahl D.K., Martens C., Sturdevant D., Turner C.V., Porcella S.F., Bloom M.E. (2016) Transcriptome analysis reveals a signature profile for tick-borne flavivirus persistence in HEK 293T cells. mBio. 7, e00314–16.
  28. Crook K.R., Miller-Kittrell M., Morrison C.R., Scholle F. (2014) Modulation of innate immune signaling by the secreted form of the West Nile virus NS1 glycoprotein. Virology. 458–459, 172–182.
  29. Camarão A.A.R., Gern O.L., Stegmann F., Mulenge F., Costa B., Saremi B., Jung K., Lepenies B., Kalinke U., Steffen I. (2023) Secreted NS1 proteins of tick-borne encephalitis virus and West Nile virus block dendritic cell activation and effector functions. Microbiol. Spectr. 11, e0219223.
  30. Zhang H.-L., Ye H.-Q., Liu S.-Q., Deng C.-L., Li X.-D., Shi P.-Y., Zhang B. (2017) West Nile virus NS1 antagonizes interferon beta production by targeting RIG-I and MDA5. J. Virol. 91, e02396–16.
  31. Mesev E.V., LeDesma R.A., Ploss A. (2019) Decoding type I and III interferon signalling during viral infection. Nat. Microbiol. 4, 914–924.
  32. Best S.M., Morris K.L., Shannon J.G., Robertson S.J., Mitzel D.N., Park G.S., Boer E., Wolfinbarger J.B., Bloom M.E. (2005) Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J. Virol. 79, 12828–12839.
  33. Lubick K.J., Robertson S.J., McNally K.L., Freedman B.A., Rasmussen A.L., Taylor R.T., Walts A.D., Tsuruda S., Sakai M., Ishizuka M., Boer E.F., Foster E.C., Chiramel A.I., Addison C.B., Green R., Kastner D.L., Katze M.G., Holland S.M., Forlino A., Freeman A.F., Boehm M., Yoshii K., Best S.M. (2015) Flavivirus antagonism of type I interferon signaling reveals prolidase as a regulator of IFNAR1 surface expression. Cell Host Microbe. 18, 61–74.
  34. Fortier M.-E., Kent S., Ashdown H., Poole S., Boksa P., Luheshi G.N. (2004) The viral mimic, polyinosinic: polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R759–R766.
  35. Benfrid S., Park K.H., Dellarole M., Voss J.E., Tamietti C., Pehau-Arnaudet G., Raynal B., Brûlé S., England P., Zhang X., Mikhailova A., Hasan M., Ungeheuer M.N., Petres S., Biering S.B., Harris E., Sakuntabhai A., Buchy P., Duong V., Dussart P., Coulibaly F., Bontems F., Rey F.A., Flamand M. (2022) Dengue virus NS1 protein conveys pro-inflammatory signals by docking onto high-density lipoproteins. EMBO Rep. 23, e53600.
  36. Modhiran N., Watterson D., Muller D.A., Panetta A.K., Sester D.P., Liu L., Hume D.A., Stacey K.J., Young P.R. (2015) Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci. Transl. Med. 7, 304ra142.
  37. Martins S. de T., Kuczera D., Lötvall J., Bordignon J., Alves L.R. (2018) Characterization of dendritic cell-derived extracellular vesicles during Dengue virus infection. Front. Microbiol. 9, 1792.
  38. Mishra R., Lahon A., Banerjea A.C. (2020) Dengue virus degrades USP33-ATF3 axis via extracellular vesicles to activate human microglial cells. J. Immunol. 205, 1787–1798.
  39. Rosendal E., Lindqvist R., Chotiwan N., Henriksson J., Överby A.K. (2024) Transcriptional response to tick-borne flavivirus infection in neurons, astrocytes and microglia in vivo and in vitro. Viruses. 16, 1327.
  40. Formanova P.P., Palus M., Salat J., Hönig V., Stefanik M., Svoboda P., Ruzek D. (2019) Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J. Neuroinflammation. 16, 205.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».