Needle-free jet-delivered mRNA-vaccine encoding influenza A(H1N1)PDM09 hemagglutinin protects mice from lethal virus infection.
- Authors: Sharabrin S.V.1, Ilyichev A.A.1, Kisakov D.N.1, Borgoyakova M.B.1, Starostina E.V.1, Kisakova L.A.1, Isaeva A.A.1, Shcherbakov D.N.1, Krasnikova S.I.1, Gudymo A.S.1, Ivanova K.I.1, Marchenko V.Y.1, Yakovlev V.A.1, Tigeeva E.V.1, Ilyicheva T.N.1, Rudometova N.B.1, Fando A.A.1, Rudometov A.P.1, Sergeev A.A.1, Karpenko L.I.1
-
Affiliations:
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
- Issue: Vol 59, No 3 (2025)
- Pages: 426-440
- Section: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://bakhtiniada.ru/0026-8984/article/view/306403
- DOI: https://doi.org/10.31857/S0026898425030061
- EDN: https://elibrary.ru/punpdj
- ID: 306403
Cite item
Abstract
Seasonal influenza is an acute respiratory illness caused by influenza A and B viruses that circulate worldwide. Due to high variability, new strains of the virus emerge every year. Therefore, vaccine formulation has to be revised every year. The advantages of mRNA vaccines are that they can be produced quickly, and without preliminary adaptation of the vaccine strain to chicken embryos. Here, the results of developing and studying the mRNA-C3-H1 vaccine encoding the hemagglutinin (HA) of the influenza A(H1N1)pdm09 virus are presented. The design and production of a DNA-template for the synthesis of mature HA mRNA in one step were described. The obtained mRNA was purified from double-stranded RNA impurities using a method based on the use of cellulose powder. The efficacy of the vaccine was assessed on BALB/c mice. The mice were immunized with “naked” mRNA vaccine using a needle-free jet injector. According to ELISA results, the average antibody titer in the serum of immunized animals was 4.6 × 105. Sera of immunized animals neutralized the mouse-adapted influenza A/California/04/09 (H1N1) MA8 virus with an average titer of 6 × 102. As shown by the ELISpot, the developed mRNA vaccine induced a T-cell immune response in mice. After stimulation of splenocytes with specific peptides, the average number of T-lymphocytes secreting IFN-γ was 236 per 106 cells. Immunization with the mRNA vaccine was shown to protect mice from infection with a lethal dose of the influenza A/California/04/09 (H1N1) MA8 virus. Thus, the developed experimental mRNA-C3-H1 vaccine is immunogenic and prevents morbidity and mortality in mice after infection with a homologous strain of influenza virus.
About the authors
S. V. Sharabrin
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
A. A. Ilyichev
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
D. N. Kisakov
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
M. B. Borgoyakova
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
E. V. Starostina
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
L. A. Kisakova
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
A. A. Isaeva
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
D. N. Shcherbakov
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
S. I. Krasnikova
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
A. S. Gudymo
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
K. I. Ivanova
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
V. Y. Marchenko
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
V. A. Yakovlev
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
E. V. Tigeeva
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
T. N. Ilyicheva
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
N. B. Rudometova
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
A. A. Fando
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
A. P. Rudometov
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
A. A. Sergeev
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
L. I. Karpenko
Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Author for correspondence.
Email: Sharabrin.sv@gmail.com
Russian Federation, Koltsovo, Novosibirsk Region, 630559
References
- Uyeki T.M., Hui D.S., Zambon M., Wentworth D.E., Monto A.S. (2022) Influenza. Lancet. 400(10353), 693–706. https://doi.org/10.1016/S0140-6736(22)00982-5
- Ohmit S.E., Thompson M.G., Petrie J.G., Thaker S.N., Jackson M.L., Belongia E.A., Zimmerman R.K., Gaglani M., Lamerato L., Spencer S.M., Jackson L., Meece J.K., Nowalk M.P., Song J., Zervos M., Cheng P.Y., Rinaldo C.R., Clipper L., Shay D.K., Piedra P., Monto A.S. (2014) Influenza vaccine effectiveness in the 2011–2012 season: protection against each circulating virus and the effect of prior vaccination on estimates. Clin. Infect. Dis. 58(3), 319‒327. https://doi.org/10.1093/cid/cit736
- Wei C.J., Crank M.C., Shiver J., Graham B.S., Mascola J.R., Nabel G.J. (2020) Next-generation influenza vaccines: opportunities and challenges. Nat. Rev. Drug Discov. 19(6), 239–252. https://doi.org/10.038/s4573-020-0066-8
- Scorza F.B., Pardi N. (2018) New kids on the block: RNA-based influenza virus vaccines. Vaccines (Basel). 6(2), 20. https://doi.org/10.3390/vaccines6020020
- Zhang C., Maruggi G., Shan H., Li J. (2019) Advances in mRNA vaccines for infectious diseases. Front. Immunol. 10, 594. https://doi.org/10.3389/fimmu.2019.00594
- Pardi N., Hogan M.J., Porter F.W., Weissman D. (2018) mRNA vaccines – a new era in vaccinology. Nat. Rev. Drug Discov. 7(4), 261‒279. https://doi.org/10.1038/nrd.2017.243
- Vogel A.B., Kanevsky I., Che Y., Swanson K.A., Muik A., Vormehr M., Kranz L.M., Walzer K.C., Hein S., Güler A., Loschko J., Maddur M.S., Ota-Setlik A., Tompkins K., Cole J., Lui B.G., Ziegenhals T., Plaschke A., Eisel D., Dany S.C., Fesser S., Erbar S., Bates F., Schneider D., Jesionek B., Sänger B., Wallisch A.K., Feuchter Y., Junginger H., Krumm S.A., Heinen A.P., Adams-Quack P., Schlereth J., Schille S., Kröner C., de la Caridad Güimil Garcia R., Hiller T., Fischer L., Sellers R.S., Choudhary S., Gonzalez O., Vascotto F., Gutman M.R., Fontenot J.A., Hall-Ursone S., Brasky K., Griffor M.C., Han S., Su A.A.H., Lees J.A., Nedoma N.L., Mashalidis E.H., Sahasrabudhe P.V., Tan C.Y., Pavliakova D., Singh G., Fontes-Garfias C., Pride M., Scully I.L., Ciolino T., Obregon J., Gazi M., Carrion R. Jr., Alfson K.J., Kalina W.V., Kaushal D., Shi P.Y., Klamp T., Rosenbaum C., Kuhn A.N., Türeci Ö., Dormitzer P.R., Jansen K.U., Sahin U. (2021) BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature. 592(7853), 283–289. https://doi.org/10.1038/s41586-021-03275-y
- Chan L., Alizadeh K., Alizadeh K., Fazel F., Kakish J.E., Karimi N., Knapp J.P., Mehrani Y., Minott J.A., Morovati S., Rghei A., Stegelmeier A.A., Vanderkamp S., Karimi K., Bridle B.W. (2021) Review of influenza virus vaccines: the qualitative nature of immune responses to infection and vaccination is a critical consideration. Vaccines (Basel). 9(9) 979. https://doi.org/10.3390/vaccines9090979
- Walsh E.E., Frenck R.W. Jr., Falsey A.R., Kitchin N., Absalon J., Gurtman A., Lockhart S., Neuzil K., Mulligan M.J., Bailey R., Swanson K.A., Li P., Koury K., Kalina W., Cooper D., Fontes-Garfias C., Shi P.Y., Türeci Ö., Tompkins K.R., Lyke K.E., Raabe V., Dormitzer P.R., Jansen K.U., Şahin U., Gruber W.C. (2020) Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N. Engl. J. Med. 383(25), 2439–2450. https://doi.org/10.1056/NEJMoa2027906
- Teo S.P. (2022) Review of COVID-19 mRNA vaccines: BNT162b2 and mRNA-1273. J. Pharm. Pract. 35(6), 947–951. https://doi.org/10.1177/08971900211009650
- Freyn A.W., Pine M., Rosado V.C., Benz M., Muramatsu H., Beattie M., Tam Y.K., Krammer F., Palese P., Nachbagauer R., McMahon M., Pardi N. (2021) Antigen modifications improve nucleoside-modified mRNA-based influenza virus vaccines in mice. Mol. Ther. Methods Clin. Dev. 22, 84–95. https://doi.org/10.1016/j.omtm.2021.06.003
- Mazunina E.P., Gushchin V.A., Kleymenov D.A., Siniavin A.E., Burtseva E.I., Shmarov M.M., Mukasheva E.A., Bykonia E.N., Kozlova S.R., Evgrafova E.A., Zolotar A.N., Shidlovskaya E.V., Kirillova E.S., Krepkaia A.S., Usachev E.V., Kuznetsova N.A., Ivanov I.A., Dmitriev S.E., Ivanov R.A., Logunov D.Y., Gintsburg A.L. (2024) Trivalent mRNA vaccine-candidate against seasonal flu with cross-specific humoral immune response. Front. Immunol. 15, 1381508. https://doi.org/10.3389/fimmu.2024.1381508
- Joe P.T., Christopoulou I., van Hoecke L., Schepens B., Ysenbaert T., Heirman C., Thielemans K., Saelens X., Aerts J.L. (2019) Intranodal administration of mRNA encoding nucleoprotein provides cross-strain immunity against influenza in mice. J. Transl. Med. 17(1), 242. https://doi.org/10.1186/s12967-019-1991-3
- Zhuang X., Qi Y., Wang M., Yu N., Nan F., Zhang H., Tian M., Li C., Lu H., Jin N. (2020) mRNA vaccines encoding the HA protein of influenza A H1N1 virus delivered by cationic lipid nanoparticles induce protective immune responses in mice. Vaccines (Basel). 8(1), 123. https://doi.org/10.3390/vaccines8010123
- Kackos C.M., DeBeauchamp J., Davitt C.J.H., Lonzaric J., Sealy R.E., Hurwitz J.L., Samsa M.M., Webby R.J. (2023) Seasonal quadrivalent mRNA vaccine prevents and mitigates influenza infection. NPJ Vaccines. 8(1), 157. https://doi.org/10.1038/s41541-023-00752-5
- Tian Y., Deng Z., Chuai Z., Li C., Chang L., Sun F., Cao R., Yu H., Xiao R., Lu S., Xu Y., Yang P. (2024) A combination influenza mRNA vaccine candidate provided broad protection against diverse influenza virus challenge. Virology. 596, 110125. https://doi.org/10.1016/j.virol.2024.110125
- Li Y., Wang X., Zeng X., Ren W., Liao P., Zhu B. (2023) Protective efficacy of a universal influenza mRNA vaccine against the challenge of H1 and H5 influenza A viruses in mice. mLife. 2(3), 308–316. https://doi.org/10.1002/mlf2.12085
- Nitika, Wei J., Hui A.M. (2022) The delivery of mRNA vaccines for therapeutics. Life (Basel). 12(8), 1254. https://doi.org/10.3390/life12081254
- Ramachandran S., Satapathy S.R., Dutta T. (2022) Delivery strategies for mRNA vaccines. Pharm. Med. 36(1), 11–20. https://doi.org/10.1007/s40290-021-00417-5
- Buschmann M.D., Carrasco M.J., Alishetty S., Paige M., Alameh M.G., Weissman D. (2021) Nanomaterial delivery systems for mRNA vaccines. Vaccines (Basel). 9(1), 65. https://doi.org/10.3390/vaccines9010065
- Kim B., Hosn R.R., Remba T., Yun D., Li N., Abraham W., Melo M.B., Cortes M., Li B., Zhang Y., Dong Y., Irvine D.J. (2023) Optimization of storage conditions for lipid nanoparticle-formulated self-replicating RNA vaccines. J. Control. Release. 353, 241–253. https://doi.org/10.1016/j.jconrel.2022.11.022
- Tsilingiris D., Vallianou N.G., Karampela I., Liu J., Dalamaga M. (2022) Potential implications of lipid nanoparticles in the pathogenesis of myocarditis associated with the use of mRNA vaccines against SARS-CoV-2. Metabol. Open. 13, 100159. https://doi.org/10.1016/j.metop.2021.100159
- Wilczewska A.Z., Niemirowicz K., Markiewicz K.H., Car H. (2012) Nanoparticles as drug delivery systems. Pharmacol. Rep. 64(5), 1020–1037. https://doi.org/10.1016/s1734-1140(12)70901-5
- Eygeris Y., Gupta M., Kim J., Sahay G. (2022) Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 55(1), 2–12. https://doi.org/10.1021/acs.accounts.1c00544
- Fraiman J., Erviti J., Jones M., Greenland S., Whelan P., Kaplan R.M., Doshi P. (2022) Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine. 40(40), 5798–5805. https://doi.org/10.1016/j.vaccine.2022.08.036
- Giannotta G., Murrone A., Giannotta N. (2023) COVID-19 mRNA vaccines: the molecular basis of some adverse events. Vaccines (Basel). 11(4), 747. https://doi.org/10.3390/vaccines11040747
- Parés-Badell O., Martínez-Gómez X., Pinós L., Borras-Bermejo B., Uriona S., Otero-Romero S., Rodrigo-Pendás J.Á., Cossio-Gil Y., Agustí A., Aguilera C., Campins M. (2021) Local and systemic adverse reactions to mRNA COVID-19 vaccines comparing two vaccine types and occurrence of previous COVID-19 infection. Vaccines (Basel). 9(12), 463. https://doi.org/10.3390/vaccines9121463
- Dey A., Chozhavel Rajanathan T.M., Chandra H., Pericherla H.P.R., Kumar S., Choonia H.S., Bajpai M., Singh A.K., Sinha A., Saini G., Dalal P., Vandriwala S., Raheem M.A., Divate R.D., Navlani N.L., Sharma V., Parikh A., Prasath S., Sankar Rao M., Maithal K. (2021) Immunogenic potential of DNA vaccine candidate, ZyCoV-D against SARS-CoV-2 in animal models. Vaccine. 39(30), 4108–4116. https://doi.org/10.1016/j.vaccine.2021.05.098
- Kwilas S., Kishimori J.M., Josleyn M., Jerke K., Ballantyne J., Royals M., Hooper J.W. (2014) A hantavirus pulmonary syndrome (HPS) DNA vaccine delivered using a spring-powered jet injector elicits a potent neutralizing antibody response in rabbits and nonhuman primates. Curr. Gene Ther. 14(3), 200–210. https://doi.org/10.2174/1566523214666140522122633
- Hu J., Shi H., Zhao C., Li X., Wang Y., Cheng Q., Goswami R., Zhen Q., Mei M., Song Y., Yang S., Li Q. (2016) Lispro administered by the QS-M Needle-Free Jet Injector generates an earlier insulin exposure. Expert Opin. Drug Deliv. 13(9), 1203–1207. https://doi.org/10.1080/17425247.2016.1198772
- Kwon T.R., Seok J., Jang J.H., Kwon M.K., Oh C.T., Choi E.J., Hong H.K., Choi Y.S., Bae J., Kim B.J. (2016) Needle-free jet injection of hyaluronic acid improves skin remodeling in a mouse model. Eur. J. Pharm. Biopharm. 105, 69–74. https://doi.org/10.1016/j.ejpb.2016.05.014
- Ravi A.D., Sadhna D., Nagpaal D., Chawla L. (2015) Needle free injection technology: a complete insight. Int. J. Pharm. Investig. 5(4), 192–199. https://doi.org/10.4103/2230-973X.167662
- Scheib N., Tiemann J., Becker C., Probst H.C., Raker V.K., Steinbrink K. (2022) The dendritic cell dilemma in the skin: between tolerance and immunity. Front. Immunol. 13, 929000. https://doi.org/10.3389/fimmu.2022.929000
- Brocato R.L., Kwilas S.A., Kim R.K., Zeng X., Principe L.M., Smith J.M., Hooper J.W. (2021) Protective efficacy of a SARS-CoV-2 DNA vaccine in wild-type and immunosuppressed Syrian hamsters. NPJ Vaccines. 6(1), 16. https://doi.org/10.1038/s41541-020-00279-z
- Alamri S.S., Alluhaybi K.A., Alhabbab R.Y., Basabrain M., Algaissi A., Almahboub S., Alfaleh M.A., Abujamel T.S., Abdulaal W.H., ElAssouli M.Z., Alharbi R.H., Hassanain M., Hashem A.M. (2021) Synthetic SARS-CoV-2 spike-based DNA vaccine elicits robust and long-lasting Th1 humoral and cellular immunity in mice. Front. Microbiol. 12, 727455. https://doi.org/10.3389/fmicb.2021.727455
- Abbasi S., Matsui-Masai M., Yasui F., Hayashi A., Tockary T.A., Mochida Y., Akinaga S., Kohara M., Kataoka K., Uchida S. (2024) Carrier-free mRNA vaccine induces robust immunity against SARS-CoV-2 in mice and non-human primates without systemic reactogenicity. Mol. Ther. 32(5), 1266–1283. https://doi.org/10.1016/j.ymthe.2024.03.022
- Кисаков Д.Н., Кисакова Л.А., Шарабрин С.В., Яковлев В.А., Тигеева Е.В., Боргоякова М.Б., Старостина Е.В., Зайковская А.В., Рудометов А.П., Рудометова Н.Б., Карпенко Л.И., Ильичев А.А. (2023) Доставка экспериментальной мРНК-вакцины, кодирующей RBD SARS-CoV-2 с помощью струйной инжекции. Бюллетень экспериментальной биологии и медицины. 176(12), 751–756. https://doi.org/10.47056/0365-9615-2023-176-12-751-756
- Шарабрин С.В., Бондарь А.А., Старостин E.B., Кисаков Д.Н. Кисакова Л.А., Задорожный А.М, Рудометов А.П., Ильичев А.А., Карпенко Л.И. (2023) Удаление примесной дцРНК из препарата синтезированной матричным синтезом мРНК. Бюллетень экспериментальной биологии и медицины. 176(12), 723–728. https://doi.org/10.47056/0365-9615-2023-176-12-723-728
- Karpenko L.I., Rudometov A.P., Sharabrin S.V., Shcherbakov D.N., Borgoyakova M.B., Bazhan S.I., Volosnikova E.A., Rudometova N.B., Orlova L.A., Pyshnaya I.A., Zaitsev B.N., Volkova N.V., Azaev M.S., Zaykovskaya A.V., Pyankov O.V., Ilyichev A.A. (2021) Delivery of mRNA vaccine against SARS-CoV-2 using a polyglucin: spermidine conjugate. Vaccines (Basel). 9(2), 76. https://doi.org/10.3390/vaccines9020076
- Gross F.L., Bai Y., Jefferson S., Holiday C., Levine M.Z. (2017) Measuring influenza neutralizing antibody responses to A(H3N2) viruses in human sera by microneutralization assays using MDCK-SIAT1 cells. J. Vis. Exp. 129, 56448. https://doi.org/10.3791/56448
- Portal M.M., Pavet V., Erb C., Gronemeyer H. (2015) Human cells contain natural double-stranded RNAs with potential regulatory functions. Nat. Struct. Mol. Biol. 22, 89–97.
- Weissman D., Pardi N., Muramatsu H., Karikó K. (2013) HPLC purification of in vitro transcribed long RNA. Methods Mol. Biol. 969, 43–54. https://doi.org/10.1007/978-1-62703-260-5_3
- Chen Y., Lin J., Zhao Y., Ma X., Yi H. (2021) Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J. Zhejiang Univ. Sci. B. 22(8), 609–632. https://doi.org/10.1631/jzus.B2000808
- Karikó K., Muramatsu H., Welsh F.A., Ludwig J., Kato H., Akira S., Weissman D. (2008) Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16(11), 1833–1840. https://doi.org/10.1038/mt.2008.200
- Adibzadeh S., Fardaei M., Takhshid M.A., Miri M.R., Rafiei Dehbidi G., Farhadi A., Ranjbaran R., Alavi P., Nikouyan N., Seyyedi N., Naderi S., Eskandari A., Behzad-Behbahani A. (2019) Enhancing stability of destabilized green fluorescent protein using chimeric mRNA containing human beta-globin 5ꞌ and 3ꞌ untranslated regions. Avicenna J. Med. Biotechnol. 11(1), 112–117.
- Cao J., Novoa E.M., Zhang Z., Chen W.C.W., Liu D., Choi G.C.G., Wong A.S.L., Wehrspaun C., Kellis M., Lu T.K. (2021) High-throughput 5’ UTR engineering for enhanced protein production in non-viral gene therapies. Nat. Commun. 12(1), 4138. https://doi.org/10.1038/s41467-021-24436-7
- Yu J., Russell J.E. (2001) Structural and functional analysis of an mRNP complex that mediates the high stability of human beta-globin mRNA. Mol. Cell Biol. 21(17), 5879–5888. https://doi.org/10.1128/MCB.21.17.5879-5888.2001
- Ferizi M., Aneja M.K., Balmayor E.R., Badieyan Z.S., Mykhaylyk O., Rudolph C., Plank C. (2016) Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts. Sci. Rep. 6, 39149. https://doi.org/10.1038/srep39149
- Keshavarz M., Mirzaei H., Salemi M., Momeni F., Mousavi M.J., Sadeghalvad M., Arjeini Y., Solaymani-Mohammadi F., Sadri Nahand J., Namdari H., Mokhtari-Azad T., Rezaei F. (2019) Influenza vaccine: where are we and where do we go? Rev. Med. Virol. 29(1), e2014. https://doi.org/10.1002/rmv.2014
- Armbruster N., Jasny E., Petsch B. (2019) Advances in RNA vaccines for preventive indications: a case study of a vaccine against rabies. Vaccines (Basel). 7(4), 132. https://doi.org/10.3390/vaccines7040132
- Sonoda J., Mizoguchi I., Inoue S., Watanabe A., Sekine A., Yamagishi M., Miyakawa S., Yamaguchi N., Horio E., Katahira Y., Hasegawa H., Hasegawa T., Yamashita K., Yoshimoto T. (2023) A promising needle-free pyro-drive jet injector for augmentation of immunity by intradermal injection as a physical adjuvant. Int. J. Mol. Sci. 24(10), 9094. https://doi.org/10.3390/ijms24109094
- Хромова Е.А., Ахматова Н.К., Костинов М.П., Сходова С.А., Столпникова В.Н., Власенко А.Е., Полищук В.Б., Шмитько А.Д. (2023) Влияние иммуноадъювантной и безадъювантных вакцин против гриппа на иммунофенотип лимфоцитов in vitro. Инфекция и иммунитет. 13(3), 430–438. https://doi.org/10.15789/2220-7619-TIO-1250
Supplementary files
