Expression of tick-borne encephalitis virus nonstructural protein 1 stimulates the secretion of extracellular vesicles capable of activating IL-1β production

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Despite active research, so far the detailed mechanisms of TBEV pathogenesis have not been fully disclosed. Recently, extracellular vesicles, especially small-sized vesicles, which have been shown to play an important role in the pathogenesis of many viruses, have attracted the attention of scientists. In this study, we investigated the effect of nonstructural protein 1 (NS1) expression of tick-borne encephalitis virus on the release of extracellular vesicles by cells, and assessed the possibility of these vesicles affecting other cells. NS1 expression by TBEV was found to increase the release of extracellular vesicles by HEK293T cells; however, no changes in the size profile of released vesicles were detected. In addition, NS1 is detected in both large and small vesicle size fractions. It was found that NS1 TBEV is not present inside the vesicles, but is associated with their outer surface. Small-sized vesicles derived from the culture medium of NS1-expressing HEK293T cells are able to induce an increase in mRNA content and interleukin-1β (IL-1β) secretion in human neuroblastoma SHSY5Y cells. The results indicate the involvement of NS1 protein and vesicles in the development of neuroinflammation and are important for understanding the mechanisms of tick–borne encephalitis virus pathogenesis.

作者简介

E. Starodubova

Engelhardt Institute of Molecular Biology

Email: estarodubova@yandex.ru
俄罗斯联邦, Moscow, 119991

A. Latanova

Engelhardt Institute of Molecular Biology

Email: estarodubova@yandex.ru
俄罗斯联邦, Moscow, 119991

Y. Kuzmenko

Engelhardt Institute of Molecular Biology

Email: estarodubova@yandex.ru
俄罗斯联邦, Moscow, 119991

V. Popenko

Engelhardt Institute of Molecular Biology

Email: estarodubova@yandex.ru
俄罗斯联邦, Moscow, 119991

V. Karpov

Engelhardt Institute of Molecular Biology

编辑信件的主要联系方式.
Email: estarodubova@yandex.ru
俄罗斯联邦, Moscow, 119991

参考

  1. Chiffi G., Grandgirard D., Leib S.L., Chrdle A., Růžek D. (2023) Tick-borne encephalitis: A comprehensive review of the epidemiology, virology, and clinical picture. Rev. Med. Virol. 33, e2470.
  2. Андаев Е.И., Никитин А.Я., Толмачёва М.И., Зарва И.Д., Яцменко Е.В., Матвеева В.А., Сидорова Е.А., Колесникова В.Ю., Балахонов С.В. (2023) Эпидемиологическая ситуация по клещевому вирусному энцефалиту в Российской Федерации в 2022 г. и прогноз ее развития на 2023 г. Проблемы Особо Опасных Инфекций. 6–16.
  3. Pustijanac E., Buršić M., Talapko J., Škrlec I., Meštrović T., Lišnjić D. (2023) Tick-borne encephalitis virus: a comprehensive review of transmission, pathogenesis, epidemiology, clinical manifestations, diagnosis, and prevention. Microorganisms. 11, 1634.
  4. Worku D.A. (2023) Tick-borne encephalitis (TBE): from tick to pathology. J. Clin. Med. 12, 6859.
  5. Fares M., Cochet-Bernoin M., Gonzalez G., Montero-Menei C.N., Blanchet O., Benchoua A., Boissart C., Lecollinet S., Richardson J., Haddad N., Coulpier M. (2020) Pathological modeling of TBEV infection reveals differential innate immune responses in human neurons and astrocytes that correlate with their susceptibility to infection. J. Neuroinflammation. 17, 76.
  6. Latanova A., Karpov V., Starodubova E. (2024) Extracellular vesicles in Flaviviridae pathogenesis: their roles in viral transmission, immune evasion, and inflammation. Int. J. Mol. Sci. 25, 2144.
  7. Mishra R., Lata S., Ali A., Banerjea A.C. (2019) Dengue haemorrhagic fever: a job done via exosomes? Emerg. Microbes Infect. 8, 1626.
  8. Zhou W., Woodson M., Neupane B., Bai F., Sherman M.B., Choi K.H., Neelakanta G., Sultana H. (2018) Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog. 14, e1006764.
  9. Zhou W., Woodson M., Sherman M.B., Neelakanta G., Sultana H. (2019) Exosomes mediate Zika virus transmission through SMPD3 neutral sphingomyelinase in cortical neurons. Emerg. Microbes Infect. 8, 307–326.
  10. Fikatas A., Dehairs J., Noppen S., Doijen J., Vanderhoydonc F., Meyen E., Swinnen J.V., Pannecouque C., Schols D. (2021) Deciphering the role of extracellular vesicles derived from ZIKV-infected hcMEC/D3 cells on the blood-brain barrier system. Viruses. 13, 2363.
  11. Mishra R., Lahon A., Banerjea A.C. (2020) Dengue virus degrades USP33-ATF3 axis via extracellular vesicles to activate human microglial cells. J. Immunol. 205, 1787–1798.
  12. Iacono-Connors L.C., Schmaljohn C.S. (1992) Cloning and sequence analysis of the genes encoding the nonstructural proteins of langat virus and comparative analysis with other flaviviruses. Virology. 188, 875–880.
  13. Mandl C.W., Iacono-Connors L., Wallner G., Holzmann H., Kunz C., Heinz F.X. (1991) Sequence of the genes encoding the structural proteins of the low-virulence tick-borne flaviviruses Langat TP21 and Yelantsev. Virology. 185, 891–895.
  14. Starodubova E., Tuchynskaya K., Kuzmenko Y., Latanova A., Tutyaeva V., Karpov V., Karganova G. (2023) Activation of early proinflammatory responses by TBEV NS1 varies between the strains of various subtypes. Int. J. Mol. Sci. 24, 1011.
  15. Yakovlev A.A., Druzhkova T.A., Stefanovich A., Moiseeva Yu.V., Lazareva N.A., Zinchuk M.S., Rider F.K., Guekht A.B., Gulyaeva N.V. (2023) Elevated level of small extracellular vesicles in the serum of patients with depression, epilepsy and epilepsy with depression. Neurochem. J. 17, 571–583.
  16. Горшков А.Н., Пурвиньш Л.В., Протасов А.В., Некрасов П.А., Шалджян А.А., Васин А.В. (2021) Сравнительный анализ методов выделения экзосом из культуральной среды. Цитология. 63, 193–204.
  17. Zhang S., He Y., Wu Z., Wang M., Jia R., Zhu D., Liu M., Zhao X., Yang Q., Wu Y., Zhang S., Huang J., Ou X., Gao Q., Sun D., Zhang L., Yu Y., Chen S., Cheng A. (2023) Secretory pathways and multiple functions of nonstructural protein 1 in flavivirus infection. Front. Immunol. 14, 1205002.
  18. Perera D.R., Ranadeva N.D., Sirisena K., Wijesinghe K.J. (2024) Roles of NS1 protein in Flavivirus pathogenesis. ACS Infect. Dis. 10, 20–56.
  19. Gelpi E., Preusser M., Garzuly F., Holzmann H., Heinz F.X., Budka H. (2005) Visualization of Central European tick-borne encephalitis infection in fatal human cases. J. Neuropathol. Exp. Neurol. 64, 506–512.
  20. Tang W.-D., Tang H.-L., Peng H.-R., Ren R.-W., Zhao P., Zhao L.-J. (2023) Inhibition of tick-borne encephalitis virus in cell cultures by ribavirin. Front. Microbiol. 14, 1182798.
  21. Peng Y., Yang Y., Li Y., Shi T., Luan Y., Yin C. (2023) Exosome and virus infection. Front. Immunol. 14, 1154217.
  22. Martin C., Ligat G., Malnou C.E. (2023) The Yin and the Yang of extracellular vesicles during viral infections. Biomed. J. 47, 100659.
  23. Welsh J.A., Goberdhan D.C.I., OꞌDriscoll L., Buzas E.I., Blenkiron C., Bussolati B., Cai H., Di Vizio D., Driedonks T.A.P., Erdbrügger U., Falcon-Perez J.M., Fu Q.L., Hill A.F., Lenassi M., Lim S.K., Mahoney M.G., Mohanty S., Möller A., Nieuwland R., Ochiya T., Sahoo S., Torrecilhas A.C., Zheng L., Zijlstra A., Abuelreich S., Bagabas R., Bergese P., Bridges E.M., Brucale M., Burger D., Carney R.P., Cocucci E., Crescitelli R., Hanser E., Harris A.L., Haughey N.J., Hendrix A., Ivanov A.R., Jovanovic-Talisman T., Kruh-Garcia N.A., Kuꞌulei-Lyn Faustino V., Kyburz D., Lässer C., Lennon K.M., Lötvall J., Maddox A.L., Martens-Uzunova E.S., Mizenko R.R., Newman L.A., Ridolfi A., Rohde E., Rojalin T., Rowland A., Saftics A., Sandau U.S., Saugstad J.A., Shekari F., Swift S., Ter-Ovanesyan D., Tosar J.P., Useckaite Z., Valle F., Varga Z., van der Pol E., van Herwijnen M.J.C., Wauben M.H.M., Wehman A.M., Williams S., Zendrini A., Zimmerman A.J.; MISEV Consortium; Théry C., Witwer K.W. (2024) Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles. 13, e12404.
  24. Reyes-Ruiz J.M., Osuna-Ramos J.F., De Jesús-González L.A., Hurtado-Monzón A.M., Farfan-Morales C.N., Cervantes-Salazar M., Bolaños J., Cigarroa-Mayorga O.E., Martín-Martínez E.S., Medina F., Fragoso-Soriano R.J., Chávez-Munguía B., Salas-Benito J.S., Del Angel R.M. (2019) Isolation and characterization of exosomes released from mosquito cells infected with dengue virus. Virus Res. 266, 1–14.
  25. Fasae K.D., Neelakanta G., Sultana H. (2022) Alterations in arthropod and neuronal exosomes reduce virus transmission and replication in recipient cells. Extracell. Vesicles Circ. Nucl. Acids. 3, 247–279.
  26. Regmi P., Khanal S., Neelakanta G., Sultana H. (2020) Tick-borne flavivirus inhibits sphingomyelinase (IsSMase), a venomous spider ortholog to increase sphingomyelin lipid levels for its survival in Ixodes scapularis ticks. Front. Cell. Infect. Microbiol. 10, 244.
  27. Safadi D.E., Lebeau G., Lagrave A., Mélade J., Grondin L., Rosanaly S., Begue F., Hoareau M., Veeren B., Roche M., Hoarau J.J., Meilhac O., Mavingui P., Desprès P., Viranaïcken W., Krejbich-Trotot P. (2023) Extracellular vesicles are conveyors of the NS1 toxin during Dengue virus and Zika virus infection. Viruses. 15, 364.
  28. Puerta-Guardo H., Glasner D.R., Harris E. (2016) Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability. PLoS Pathog. 12, e1005738.
  29. Puerta-Guardo H., Glasner D.R., Espinosa D.A., Biering S.B., Patana M., Ratnasiri K., Wang C., Beatty P.R., Harris E. (2019) Flavivirus NS1 triggers tissue-specific vascular endothelial dysfunction reflecting disease tropism. Cell Rep. 26, 1598‒1613.e8.
  30. Lo N.T.N., Roodsari S.Z., Tin N.L., Wong M.P., Biering S.B., Harris E. (2022) Molecular determinants of tissue specificity of flavivirus nonstructural protein 1 interaction with endothelial cells. J. Virol. 96, e0066122.
  31. Latanova A., Starodubova E., Karpov V. (2022) Flaviviridae nonstructural proteins: the role in molecular mechanisms of triggering inflammation. Viruses. 14, 1808.
  32. Benfrid S., Park K.H., Dellarole M., Voss J.E., Tamietti C., Pehau-Arnaudet G., Raynal B., Brûlé S., England P., Zhang X., Mikhailova A., Hasan M., Ungeheuer M.N., Petres S., Biering S.B., Harris E., Sakuntabhai A., Buchy P., Duong V., Dussart P., Coulibaly F., Bontems F., Rey F.A., Flamand M. (2022) Dengue virus NS1 protein conveys pro-inflammatory signals by docking onto high-density lipoproteins. EMBO Rep. 23, e53600.
  33. Modhiran N., Watterson D., Muller D.A., Panetta A.K., Sester D.P., Liu L., Hume D.A., Stacey K.J., Young P.R. (2015) Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci. Transl. Med. 7, 304ra142.
  34. Sung P.-S., Huang T.-F., Hsieh S.-L. (2019) Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2. Nat. Commun. 10, 2402.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».