Особенности синтеза наночастиц LiRF4 (R = Er–Lu) методом высокотемпературного соосаждения и их фотолюминесцентные свойства

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Наночастицы LiRF4 (R = Y, Yb, Lu), активированные ионами Yb3+/Er3+ и Yb3+/Tm3+, получены методом высокотемпературного соосаждения, исследовано влияние мольного соотношения прекурсоров и катионного состава матриц на их размерность и морфологию. Оптимизирован метод гетерогенной кристаллизации данных соединений с использованием нанозатравок LiYF4, что открывает возможности управляемого синтеза наноразмерных частиц LiRF4 с контролируемыми характеристиками. Среди изученных объектов наночастицы LiYF4@LiYbF4:Tm3+@LiYF4 демонстрируют наиболее интенсивную антистоксовую фотолюминесценцию в УФ- (λ = 362 нм) и синем (λ = 450 нм) диапазонах, что превышает аналогичные показатели для частиц β-NaYF4:Yb3+/Tm3+@NaYF4. Наночастицы LiYF4@LiLuF4:Yb3+/Er3+@LiYF4 являются наиболее эффективными преобразователями ИК-излучения в области λ = 1530 нм среди исследованных изоструктурных матриц и проявляют близкие показатели спектрально-люминесцентных свойств с соединением β-NaYF4:Yb3+/Er3+@NaYF4 с эквивалентной степенью солегирования. Полученные результаты позволяют рассматривать наночастицы LiYF4@LiYbF4:Tm3+@LiYF4 и LiYF4@LiLuF4:Yb3+/Er3+@LiYF4 в качестве реальной альтернативы наиболее широко применяемым люминофорам на основе гексагональной матрицы β-NaYF4 для задач фотоники и биотехнологий.

Полный текст

Доступ закрыт

Об авторах

А. В. Кошелев

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Автор, ответственный за переписку.
Email: avkoshelev03@gmail.com
Россия, Москва

В. В. Артемов

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: avkoshelev03@gmail.com
Россия, Москва

Н. А. Архарова

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: avkoshelev03@gmail.com
Россия, Москва

M. S. Seyed Dorraji

University of Zanjan

Email: avkoshelev03@gmail.com
Иран, Зенджан

Д. Н. Каримов

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: avkoshelev03@gmail.com
Россия, Москва

Список литературы

  1. Combes C.M., Dorenbos P., Van Eijk C.W. et al. // J. Luminescence. 1997. V. 71. № 1. P. 65. https://doi.org/10.1016/S0022-2313(96)00118-4
  2. Каминский А.А., Ляшенко А.И., Исаев Н.П. и др. // Квантовая электроника. 1998. Т. 25. № 3. С. 195.
  3. Loiko P., Soulard R., Guillemot L. et al. // IEEE J. Quantum Electron. 2019. V. 55. № 6. P. 1. https://doi.org/10.1109/JQE.2019.2943477
  4. Yokota Y., Yamaji A., Kawaguchi N. et al. // Phys. Status Solidi. С. 2012. V. 9. № 12. P. 2279. https://doi.org/10.1002/pssc.201200290
  5. Kamada K., Hishinuma K., Kurosawa S. et al. // Opt. Mater. 2016. V. 61. P. 134. https://doi.org/10.1016/j.optmat.2016.09.019
  6. Qiu Z., Wang S., Wang W., Wu S. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 26. P. 29835. https://doi.org/10.1021/acsami.0c07765
  7. Vasyliev V., Villora E.G., Nakamura M. et al. // Opt. Express. 2012. V. 20. № 13. P. 14460. https://doi.org/10.1364/OE.20.014460
  8. Romanova I.V., Tagirov M.S. // Magnetic Resonance in Solids. Electronic J. 2019. V. 21. № 4. P. 13. https://doi.org/10.26907/mrsej-19412
  9. Zelmon D.E., Erdman E.C., Stevens K.T. et al. // Appl. Opt. 2016. V. 55. № 4. P. 834. https://doi.org/10.1364/AO.55.000834
  10. Khaydukov E.V., Mironova K.E., Semchishen V.A. et al. // Sci. Rep. 2016. V. 6. № 1. P. 35103. https://doi.org/10.1038/srep35103
  11. Hao S., Shang Y., Li D. et al. // Nanoscale. 2017. V. 9. № 20. P. 6711. https://doi.org/10.1039/C7NR01008G
  12. Zheng K., Han S., Zeng X. et al. // Adv. Mater. 2018. V. 30. № 30. P. 1801726. https://doi.org/10.1002/adma.201801726
  13. Guo Q., Wu J., Yang Y. et al. // J. Power Sources. 2019. V. 426. P. 178. https://doi.org/10.1016/j.jpowsour.2019.04.039
  14. Zhou Y., Wu S., Wang F. et al. // Chemosphere. 2020. V. 238. P. 124648. https://doi.org/10.1016/j.chemosphere.2019.124648
  15. Каримов Д.Н., Демина П.А., Кошелев А.В. и др. // Российские нанотехнологии. 2020. Т. 15. № 6. С. 699. https://doi.org/10.1134/S1992722320060114
  16. Huang R., Liu S., Huang J. et al. // Nanoscale. 2021. V. 13. № 9. P. 4812. https://doi.org/10.1039/D0NR09068A
  17. Yang Y., Huang J., Wei W. et al. // Nature Commun. 2022. V. 13. № 1. P. 3149. https://doi.org/10.1038/s41467-022-30713-w
  18. Федоров П.П. // Журн. неорган. химии. 1999 Т. 44. № 11. С. 1792.
  19. Mai H.X., Zhang Y.W., Si R. et al. // J. Am. Chem. Soc. 2006. V. 128. № 19. P. 6426. https://doi.org/10.1021/ja060212h
  20. Naccache R., Yu Q., Capobianco J.A. // Adv. Opt. Mater. 2015. V. 3. № 4. P. 482. https://doi.org/10.1002/adom.201400628
  21. Wang J., Deng R., MacDonald M.A. et al. // Nat. Mater. 2014. V. 13. № 2. P. 157. https://doi.org/10.1038/NMAT3804
  22. Rojas‐Gutierrez P.A., DeWolf C., Capobianco J.A. // Part. Part. Syst. Charact. 2016. V. 33. № 12. P. 865. https://doi.org/10.1002/ppsc.201600218
  23. Cheng T., Marin R., Skripka A., Vetrone F. // J. Am. Chem. Soc. 2018. V. 140. № 40. P. 12890. https://doi.org/10.1021/jacs.8b07086
  24. Wang J., Wang F., Xu J. et al. // C.R. Chim. 2010. V. 13. № 6–7. P. 731. https://doi.org/10.1016/j.crci.2010.03.021
  25. Liu S., An Z., Huang J., Zhou B. // Nano Res. 2023. V. 16. № 1. P. 1626. https://doi.org/10.1007/s12274-022-5121-9
  26. Kaczmarek A.M., Suta M., Rijckaert H. et al. // J. Mater. Chem. C. 2021. V. 9. № 10. P. 3589. https://doi.org/10.1039/d0tc05865c
  27. Zhang X., Wang M., Ding J. et al. // CrystEngComm. 2012. V. 14. № 24. P. 8357. https://doi.org/10.1039/c2ce26159f
  28. He E., Zheng H., Gao W. et al. // Mater. Res. Bull. 2013. V. 48. № 9. P. 3505. https://doi.org/10.1016/j.materresbull.2013.05.046
  29. Chen B., Wang F. // Inorg. Chem. Front. 2020. V. 7. № 5. P. 1067. https://doi.org/10.1039/C9QI01358J
  30. Zhang L., Wang Z., Lu Z. et al. // J. Nanosci. Nanotechnol. 2014. V. 14. № 6. P. 4710. https://doi.org/10.1166/jnn.2014.8641
  31. Jiang X., Cao C., Feng W. et al. // J. Mater. Chem. B. 2016. V. 4. № 1. P. 87. https://doi.org/10.1039/c5tb02023a
  32. Carl F., Birk L., Grauel B. et al. // Nano Res. 2021. V. 14. P. 797. https://doi.org/10.1007/s12274-020-3116-y
  33. Gao W., Zheng H., He E. et al. // J. Luminescence. 2014. V. 152. P. 44. https://doi.org/10.1016/j.jlumin.2013.10.046
  34. Li W., He Q., Xu J. et al. // J. Luminescence. 2020. V. 227. P. 117396. https://doi.org/10.1016/j.jlumin.2020.117396
  35. Zou Q., Huang P., Zheng W. et al. // Nanoscale. 2017. V. 9. № 19. P. 6521. https://doi.org/10.1039/C7NR02124K
  36. Liu J., Rijckaert H., Zeng M. et al. // Adv. Funct. Mater. 2018. V. 28. № 17. P. 1707365. https://doi.org/10.1002/adfm.201707365
  37. Dong J., Zhang J., Han Q. et al. // J. Luminescence. 2019. V. 207. P. 361. https://doi.org/10.1016/j.jlumin.2018.11.041
  38. Wang F., Deng R., Liu X. // Nat. Protoc. 2014. V. 9. № 7. P. 1634. https://doi.org/10.1038/nprot.2014.111
  39. Boyer J.C., Cuccia L.A., Capobianco J.A. // Nano Lett. 2007. V. 7. № 3. P. 847. https://doi.org/10.1021/nl070235+
  40. Koshelev A.V., Arkharova N.A., Khaydukov K.V. et al. // Crystals. 2022. V. 12. № 5. P. 599. https://doi.org/10.3390/cryst12050599
  41. Wang F., Han Y., Lim C.S. et al. // Nature. 2010. V. 463. № 7284. P. 1061. https://doi.org/10.1038/nature08777
  42. Liu Q., Sun Y., Yang T. et al. // J. Am. Chem. Soc. 2011. V. 133. № 43. P. 17122. https://doi.org/10.1021/ja207078s
  43. Damasco J.A., Chen G., Shao W. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. № 16. P. 13884. https://doi.org/10.1021/am503288d
  44. Huang X. // Opt. Mater. Express. 2016. V. 6. № 7. P. 2165. https://doi.org/10.1364/OME.6.002165
  45. Alyatkin S., Asharchuk I., Khaydukov K. et al. // Nanotechnology. 2016. V. 28. № 3. P. 035401. https://doi.org/10.1088/1361-6528/28/3/035401
  46. Gao D., Zhang X., Chong B. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. № 6. P. 4288. https://doi.org/10.1039/C6CP06402G
  47. Schroter A., Märkl S., Weitzel N., Hirsch T. // Adv. Funct. Mater. 2022. V. 32. № 26. P. 2113065. https://doi.org/10.1002/adfm.202113065

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Фазовая диаграмма двойной системы LiF–YF3 [18]

Скачать (84KB)
3. Рис. 2. Рентгенограммы НЧ LiRF4, синтезированных при различном соотношении прекурсоров n(Li+):n(R3+):n(F-) (а): 1:1:4 (1), 1.75:1:4 (2), 2.5:1:4 (3); катионном составе кристаллической матрицы (б): R = Y (1), Yb (2), Lu (3) и соотношении прекурсоров 1.75:1:4

Скачать (187KB)
4. Рис. 3. СЭМ- и ПЭМ-изображения НЧ LiRF4 c соответствующими гистограммами размерного распределения, полученных при различном соотношении прекурсоров: а – 1:1:4, б – 1.75:1:4, в – 2.5:1:4, и катионном составе матрицы: R = Y (г), Yb (д), Lu (е)

Скачать (691KB)
5. Рис. 4. Рентгенограммы нанозатравок LiYF4 (1) и структур, полученных после нанесения одной (2), трех (3) и пяти (4) эпитаксиальных оболочек LiYF4:Yb3+/Er3+ (а); ПЭМ-изображение затравок LiYF4 приведено во вставке. Зависимость размерности НЧ LiYF4:Yb3+/Er3+ от соотношения nпрек:nзатр (б)

Скачать (283KB)
6. Рис. 5. Рентгенограммы НЧ LiYF4@LiYF4:Yb3+/Tm3+@LiYF4 (nΣпрек:nзатр = 20) (1), LiYF4@LiLuF4:Yb3+/Er3+@LiYF4 (nΣпрек:nзатр = 160) (2) со структурой затравка/ядро/оболочка и реперных НЧ β-NaYF4:Yb3+/Tm3+@NaYF4 (а). СЭМ-изображения НЧ LiYF4@LiYF4:Yb3+/Tm3+@LiYF4 (б), LiYF4@LiLuF4:Yb3+/Er3+@LiYF4 (в), β-NaYF4:Yb3+/Tm3+@NaYF4 (г), β-NaYF4:Yb3+/Er3+@NaYF4 (д) с соответствующими гистограммами размерного распределения

Скачать (597KB)
7. Рис. 6. Спектры ФЛ НЧ LiYF4 (1), LiYbF4 (2), LiLuF4 (3), β-NaYF4 (4), легированных ионами Yb3+/Tm3+ (а) и Yb3+/Er3+ (б). Внешний вид и наблюдаемая ФЛ коллоидов НЧ LiYF4@LiYF4:Yb3+/Tm3+@LiYF4 и LiYF4@LiLuF4:Yb3+/Er3+@LiLuF4, полученных при возбуждение излучением λ = 975 нм, показаны по вставках

Скачать (241KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».