Плотность незаполненных электронных состояний сверхтонких слоев дибромо-биантрацена на поверхности послойно выращенного ZnO

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Приведены результаты исследования топографии поверхности и плотности незаполненных электронных состояний при термическом осаждении сверхтонких пленок дибромо-биантрацена на поверхность ZnO. Измерения электронных характеристик незаполненных электронных состояний в процессе роста пленок дибромо-биантрацена до толщины 10 нм проводили методом спектроскопии полного тока с использованием тестирующего электронного пучка. Анализ экспериментальных зависимостей проводили с использованием теоретического расчета энергий орбиталей молекул дибромо-биантрацена методом теории функционала плотности.

Полный текст

Доступ закрыт

Об авторах

А. С. Комолов

Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: a.komolov@spbu.ru
Россия, г. Санкт-Петербург

Э. Ф. Лазнева

Санкт-Петербургский государственный университет

Email: a.komolov@spbu.ru
Россия, г. Санкт-Петербург

В. С. Соболев

Санкт-Петербургский государственный университет

Email: a.komolov@spbu.ru
Россия, г. Санкт-Петербург

С. А. Пшеничнюк

Институт физики молекул и кристаллов – обособленное структурное подразделение Уфимского федерального исследовательского центра РАН

Email: a.komolov@spbu.ru
Россия, г. Уфа

Н. Л. Асфандиаров

Институт физики молекул и кристаллов – обособленное структурное подразделение Уфимского федерального исследовательского центра РАН

Email: a.komolov@spbu.ru
Россия, г. Уфа

Е. В. Жижин

Санкт-Петербургский государственный университет

Email: a.komolov@spbu.ru
Россия, г. Санкт-Петербург

Д. А. Пудиков

Санкт-Петербургский государственный университет

Email: a.komolov@spbu.ru
Россия, г. Санкт-Петербург

Е. А. Дубов

Санкт-Петербургский государственный университет

Email: a.komolov@spbu.ru
Россия, г. Санкт-Петербург

И. А. Пронин

Пензенский государственный университет

Email: a.komolov@spbu.ru
Россия, г. Пенза

Ф. Дж. Акбарова

Физико-технический институт АН РУз

Email: a.komolov@spbu.ru
Узбекистан, г. Ташкент

У. Б. Шаропов

Национальный научно-исследовательский институт возобновляемых источников энергии при Минэнерго РУз

Email: a.komolov@spbu.ru
Узбекистан, г. Ташкент

Список литературы

  1. Krzywiecki M., Smykala S., Kurek J. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 11828. https://doi.org/10.1039/D2CP00844K
  2. Varghese M.A., Anjali A., Harshini D. et al. // ACS Appl. Electron. Mater. 2021. V. 3. P. 550. https://doi.org/10.1021/acsaelm.0c00931
  3. Алешин А.Н., Щербаков И.П., Трапезникова И.Н. и др. // ФТТ. 2016. Т. 58. С. 1818.
  4. Sosorev A.Y., Nuraliev M.K., Feldman E.V. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 11578. https://doi.org/10.1039/C9CP00910H
  5. Chen M., Yan L., Zhao Y. et al. // J. Mater. Chem. C. 2018. V. 6. P. 7416. https://doi.org/10.1039/C8TC01865K
  6. Постников В.А., Кулишов А.А., Лясникова М.С. и др. // Кристаллография. 2021. T. 21. C. 494. https://doi.org/10.31857/S0023476121030206
  7. Asfandiarov N.L., Muftakhov M.V., Rakhmeev R.G. et al. // J. Electron Spectrosc. Rel. Phenom. 2022. V. 256. P. 147178. https://doi.org/10.1016/j.elspec.2022.147178
  8. Komolov A.S., Lazneva E.F., Akhremtchik S.N. // App. Surf. Sci. 2010. V. 256. P. 2419. https://doi.org/10.1016/j.apsusc.2009.10.078
  9. Krzywiecki M., Grzadziel L., Powroznik P. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 16092. https://doi.org/10.1039/C8CP01976B
  10. Лазарев В.В., Блинов Л.М., Юдин С.Г. и др. // Кристаллография. 2015. Т. 60. C. 314. https://doi.org/10.7868/S0023476115020162
  11. Dominskii D.I., Kharlanov O.G., Trukhanov V.A. et al. // ACS Appl. Electron. Mater. 2022. V. 4. P. 6345. https://doi.org/10.1021/acsaelm.2c01481
  12. Komolov A.S., Lazneva E.F., Gerasimova N.B. et al. // J. Electron Spectrosc. Rel. Phenom. 2019. V. 235. P. 40. https://doi.org/10.1016/j.elspec.2019.07.001
  13. Frankenstein H., Leng C.Z., Losego M.D. et al. // Organic Electron. 2019. V. 64. P. 37. https://doi.org/10.1016/j.orgel.2018.10.002
  14. Pshenichnyuk S.A., Modelli A., Lazneva E.F. et al. // J. Phys. Chem. A. 2014. V. 118. P. 6810. https://doi.org/10.1021/jp505841c
  15. Pshenichnyuk S.A., Modelli A., Lazneva E.F. et al. // J. Phys. Chem. A. 2016. V. 120. P. 2667. https://doi.org/10.1021/acs.jpca.6b02272
  16. Komolov A.S., Moeller P.J., Lazneva E.F. // J. Electron Spectrosc. Rel. Phenom. 2003. V. 131–132. P. 67. https://doi.org/10.1016/S0368-2048(03)00104-X
  17. Sharopov U.B., Kaur K., Kurbanov M.K. et al. // Thin Solid Films. 2021. V. 735. P. 138902. https://doi.org/10.1016/j.tsf.2021.138902
  18. Pshenichnyuk S.A., Modelli A., Asfandiarov N.L. et al. // J. Chem. Phys. 2019. V. 151. P. 214309. https://doi.org/10.1063/1.5130152
  19. Komolov A.S., Moeller P.J. // Appl. Surf. Sci. 2005. V. 244. P. 573. https://doi.org/10.1016/j.apsusc.2004.10.122
  20. Комолов С.А., Лазнева Э.Ф., Комолов А.С. // Письма в ЖТФ. 2003. Т. 29. № 23. С. 13.
  21. Bartos I. // Progr. Surf. Sci. 1998. V. 59. P. 197. https://doi.org/10.1016/S0079-6816(98)00046-X
  22. Komolov A.S., Moeller P.J., Aliaev Y.G. et al. // J. Mol. Struct. 2005. V. 744–747. P. 145. https://doi.org/10.1016/j.molstruc.2005.01.047
  23. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2016.
  24. Burrow P.D., Modelli A. // SAR QSAR Environ. Res. 2013. V. 24. P. 647. https://doi.org/10.1080/1062936X.2013.792873
  25. Scheer A.M., Burrow P.D. // J. Phys. Chem. B. 2006. V. 110. P. 17751. https://doi.org/10.1021/jp0628784
  26. Jungyoon E., Kim S., Lim E. et al. // Appl. Surf. Sci. 2003. V. 205. P. 274. https://doi.org/10.1016/S0169-4332(02)01115-7
  27. Комолов А.С., Лазнева Э.Ф., Герасимова Н.Б. и др. // ФТТ. 2016. Т. 58. С. 367.
  28. Komolov A.S., Lazneva E.F., Gerasimova N.B. et al. // J. Electron Spectrosc. Rel. Phenom. 2015. V. 205. P. 52. https://doi.org/10.1016/j.elspec.2015.08.002
  29. Hill I.G., Kahn A., Cornil J. et al. // Chem. Phys. Lett. 2000. V. 317. P. 444. https://doi.org/10.1016/S0009-2614(99)01384-6
  30. Hitchcock A.P., Fischer P., Gedanken A. et al. // J. Phys. Chem. 1987. V. 91. P. 531. https://doi.org/10.1021/j100287a009
  31. Chen J.G. // Surf. Sci Rep. 1997. V. 30. P. 1. https://doi.org/10.1016/S0167-5729(97)00011-3
  32. Комолов А.С., Лазнева Э.Ф., Герасимова Н.Б. и др. // ФТТ. 2020. Т. 62. С. 1105. https://doi.org/10.21883/FTT.2020.07.49481.048

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Структурная формула молекул дибромо-биантрацена (10,10-dibromo-9,9-bianthracene, DBBA).

Скачать (12KB)
3. Рис. 2. АСМ-изображение участка поверхности 3 × 3 мкм2 пленки DBBA на поверхности ZnO, полученной методом МН. Градации серого цвета от черного до белого соответствуют перепаду высот от 0 до 10 нм. Профиль участка поверхности на отрезке, отмеченном белым горизонтальным баром, показан снизу.

Скачать (36KB)
4. Рис. 3. ТCСПТ в процессе осаждения покрытия пленки DBBA на поверхности ZnO, полученной методом МН. Около каждой кривой указана соответствующая толщина органического слоя. Вертикальные пунктирные линии проведены в области максимумов D1–D4.

Скачать (26KB)
5. Рис. 4. DOUS пленок DBBA на основе результатов СПТ-экспериментов (a) и на основе результатов расчетов с использованием методов DFT (б). Расчеты проводили методом DFT на уровне B3LYP/6–31G(d) и использовали последующую корректировку по формулам SVOE. Линейчатый спектр в нижней части (б) – значения энергий молекулярных орбиталей, установленных в ходе расчета теоретической DOUS. Вертикальные пунктирные линии проведены для удобства сравнения положения максимумов.

Скачать (24KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».