Prospects for control methods in engineering systems
- 作者: Mamedov V.M.1, Arkharov I.A.1
-
隶属关系:
- Bauman Moscow State Technical University
- 期: 卷 111, 编号 4 (2022)
- 页面: 213-220
- 栏目: Reviews
- URL: https://bakhtiniada.ru/0023-124X/article/view/132745
- DOI: https://doi.org/10.17816/RF321953
- ID: 132745
如何引用文章
详细
This article highlights the prerequisites and natural effects of control method development in engineering systems: (1) a simple deviation and perturbation controller, (2) a fuzzy logic controller with a fuzzifier and rule base, (3) a neural network controller for dynamically adjusting the coefficients of the corresponding links, (4) a discrete neural network controller with a neural approximator and controller. The experience gained by researchers and engineers since the initial description of regulatory principles in 1910, including the level of information technology design, particularly the neural network approach to machine learning and the enormous computing potential of computer devices, now enable the integration of a fundamentally novel method of discrete neural network regulation.
The article’s review aims to identify and demonstrate the importance of experimental and operational data, which must be organized and annotated at the time of collection and archiving. This approach will allow us to rapidly implement neural network controllers in engineering systems, as the most critical phase in their development is involves learning and optimization of neural network architecture.
The article presents the principle of operation, benefits, and drawbacks, and the optimal stages for enhancing a neural network controller based on two neural networks, which form a control strategy while considering the most probable state of the system at the next point in time.
作者简介
Vladislav Mamedov
Bauman Moscow State Technical University
编辑信件的主要联系方式.
Email: mamedov-vm@bk.ru
ORCID iD: 0009-0004-8780-7401
SPIN 代码: 4095-0195
Postgraduate Student, Assistant Lecturer
俄罗斯联邦, MoscowIvan Arkharov
Bauman Moscow State Technical University
Email: arkharov@bmstu.ru
ORCID iD: 0000-0002-1624-171X
SPIN 代码: 9674-4585
Dr. Sci. (Tech.), Professor
俄罗斯联邦, Moscow参考
- Mamedov V, Arkharov I, Navasardyan E. Concept design of cryogenic system of the SPD-detector for NICA project in Dubna. In: IIR Conference: The 16th Cryogenics 2021, October 5–7, 2021. 2021:24–29. doi: 10.18462/iir.cryo.2021.0005
- Denisenko VV. PID-reguljatory: principy postroenija i modifikacii. Sovremennye tehnologii avtomatizacii. 2006. № 4. S. 66–74. (In Russ).
- Dormido S. Advanced PID Control, IEEE Control Systems Magazine. 2006;26(1):98–101. doi: 10.1109/MCS.2006.1580160
- Ang KH, Chong G, Li Y. PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology. 2005;13(4):559–576.
- Ziegler JG, Nichols NB. Optimum settings for automatic controllers. Trans. ASME. 1942;64:759-768.
- Cai J. A Fully Mechanical Realization of PID Controller. Highlights in Science, Engineering and Technology. 2022;9:319–328. doi: 10.54097/hset.v9i.1861
- Egupova ND. Metody robastnogo, nejro-nechjotkogo i adaptivnogo upravlenija: uchebnik. Moscow: MGTU im. Baumana; 2002. (In Russ).
- Uskov AA, Kuz’min AV. Intellektual’nye tehnologii upravlenija. Iskusstvennye nejronnye seti i nechetkaja logika. Moscow: Gorjachaja linija-Telekom; 2004. (In Russ).
- Demidova GL, Lukichev DV. Reguljatory na osnove nechetkoj logiki v sistemah upravlenija tehnicheskimi obtektami. Saint Petersburg: Universitet ITMO; 2017. (In Russ).
- Pérez-Gomariz M, López-Gómez A, Cerdán-Cartagena F. Artificial Neural Networks as Artificial Intelligence Technique for Energy Saving in Refrigeration Systems - A Review. Clean. Technol. 2023;5:116–136. doi: 10.3390/cleantechnol5010007
- Wilson CL, Wilkinson RA and Garris MD, Self-organizing neural network character recognition on a massively parallel computer. In: IJCNN International Joint Conference on Neural Networks, San Diego, CA, USA. 1990;2:325–329. doi: 10.1109/IJCNN.1990.137734
- Shalf J. The future of computing beyond Moore’s Law. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2020;378(2166). doi: 10.1098/rsta.2019.0061
- Zubkova VV. Analiz aktual’nosti zakona Mura. Perspektivy razvitija informacionnyh tehnologij. 2014;21:136–1140. (In Russ).
- Guzhva A, Dolenko S, Persiantsev I. Multifold Acceleration of Neural Network Computations Using GPU. In: Alippi C, Polycarpou M, Panayiotou C, Ellinas G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 2009;5768. doi: 10.1007/978-3-642-04274-4_39
- Benderskaja EN, Tolstov AA. Tendencii razvitija sredstv apparatnoj podderzhki nejrovychislenij. Nauchno-tehnicheskie vedomosti SPbGPU. Informatika. Telekommunikacii. Upravlenie. 2013;3(174):9–18. (In Russ).
- Kyoung-Su Oh KS, Jung K. GPU implementation of neural networks. Pattern Recognition. 2004;37:1311–1314.
- Bouzar-Benlabiod L, Rubin SH and Benaida A. Optimizing Deep Neural Network Architectures: an overview. In: IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA. 2021:25–32. doi: 10.1109/IRI51335.2021.00010
- Ünal HT, Başçiftçi F. Evolutionary design of neural network architectures: a review of three decades of research. Artif. Intell. Rev. 2022;55:1723–1802. doi: 10.1007/s10462-021-10049-5
- Dzhulli A, Pal S. Biblioteka Keras – instrument glubokogo obuchenija. Realizacija nejronnyh setej s pomoshh’ju bibliotek Theano i TensorFlow. Moscow: DMK Press; 2018. (In Russ).
- Golovko VA. Nejrosetevye tehnologii obrabotki dannyh: ucheb. Posobie. Minsk: BGU; 2017. (In Russ).
补充文件
