Numerical modelling of the co-gasification process with staged feeding of coal and biomass

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A two-stage scheme of a coal and biomass co-gasification process is proposed, in which partial combustion of coal produces a high-temperature gasifying agent, which is used for biomass gasification. At the same time, it is possible to reduce thermodynamic losses in the gasification process by reducing the temperature of the gasifier reaction zone due to the high reactivity of biofuels compared to coal. Using a stationary one-dimensional kinetic-thermodynamic model of a two-stage reactor, numerical calculations are carried out with varying the coal-biofuel ratio and specific oxidizer consumption. A special feature of the model is taking into account the recirculation of residual char. The calculation results allow determining the optimal degree of coal replacement with plant biomass according to technological criteria (cold gas efficiency, specific yield of combustible components).

About the authors

I. G. Donskoy

Melentiev Energy Systems Institute SB RAS

Author for correspondence.
Email: donskoy.chem@mail.ru
664033 Irkutsk, Russia

References

  1. Bhuiyan A.A., Blicblau A.S., Sadrul Islam A.K.M., Naser J. // Journal of the Energy Institute. 2018. V. 91. No. 1. P. 1. https://doi.org/10.1016/j.joei.2016.10.006
  2. Vershinina K., Dorokhov V., Romanov D., Strizhak P. // Waste and Biomass Valorization. 2023. V. 14. P. 431. https://doi.org/10.1007/s12649-022-01883-x
  3. Guo J.-X. // Clean Technologies and Environmental Policy. 2022. V. 24. P. 2531. https://doi.org/10.1007/s10098-022-02332-y
  4. Кейко А.В., Ширкалин И.А., Свищев Д.А. // Изв. РАН. Энерг. 2006. № 3. С. 55.
  5. Kirubakaran V., Sivaramakrishnan V., Nalini R. et al. // Energy Sources A. 2009. V. 31. No. 11. P. 967. http://dx.doi.org/10.1080/15567030801904541
  6. Svishchev D. // Energy Systems Research. 2021. V. 4. No. 3. P. 38. http://dx.doi.org/10.38028/esr.2021.03.0004
  7. van der Drift A., Boerrigter H., Coda B., Cieplik M.K., Hemmes K. Entrained flow gasification of biomass. Ash behaviour, feeding issues, and system analyses. Report ECN-C-04-039. 2004.
  8. Tolvanen H., Keipi T., Raiko R. // Fuel. 2016. V. 176. P. 153.
  9. Wang T., Stiegel G. (eds.) Integrated gasification combined cycle (IGCC) technologies Woodhead Publ., 2017.
  10. Obernberger I., Brunner T., Mandl C., Kerschbaum M., Svetik T. // Energy Procedia. 2017. V. 120. P. 681. https://doi.org/10.1016/j.egypro.2017.07.184
  11. Шумовский А.В., Горлов Е.Г. // ХТТ. 2022. № 3. С. 13. https://doi.org/10.31857/S0023117722030094 [Solid Fuel Chem. 2022. V. 56. P. 166. https://doi.org/10.3103/S0361521922030090]
  12. He Z.-M., Deng Y.-J., Cao J.-P., Zhao X.-Y. // Fuel. 2024. V. 357A. P. 129728. https://doi.org/10.1016/j.fuel.2023.129728
  13. Thattai A.T., Oldenboek V., Schoenmakers L., Woudstra T., Aravind P.V. // Applied Energy. 2016. V. 168. P. 381. http://dx.doi.org/10.1016/j.apenergy.2016.01.131
  14. Sofia D., Llano P.C., Giuliano A. et al. // Chem. Eng. Res. Des. 2014. V. 92. P. 1428. https://doi.org/10.1016/j.cherd.2013.11.019
  15. Huang J., Liao Y., Lin J. et al. // Energy. 2024. V. 298. P. 131306. https://doi.org/10.1016/j.energy.2024.131306
  16. Kleinhans U., Wieland C., Frandsen F.J., Spliethoff H. // Progress in Energy and Combustion Science. 2018. V. 68. P. 65. https://doi.org/10.1016/j.pecs.2018.02.001
  17. Лапидус А.Л., Шумовский А.В., Горлов Е.Г. // ХТТ. 2023. № 6. С. 11. https://doi.org/10.31857/S0023117723060051 [Solid Fuel Chem. 2023. V. 57. P. 373. https://doi.org/10.3103/S0361521923060046]
  18. Jeong H.J., Hwang I.S., Park S.S., Hwang J. // Fuel. 2017. V. 196. P. 371. http://dx.doi.org/10.1016/j.fuel.2017.01.103
  19. Донской И.Г. // ХТТ. 2019. № 2. С. 55. https://doi.org/10.1134/S002311771902004X [Solid Fuel Chemistry. 2019. V. 53. No. 2. P. 113. https://doi.org/10.3103/S0361521919020046]
  20. Kuznetsov G.V., Romanov D.S., Vershinina K.Yu., Strizhak P.A. // Fuel. 2021. V. 302. P. 121203. https://doi.org/10.1016/j.fuel.2021.121203
  21. Малышев Д.Ю., Сыродой С.В. // Изв. Томск. политехн. ун-та. Инж. георес. 2020. Т. 331. № 6. С. 77. https://doi.org/10.18799/24131830/2020/6/2677
  22. Ambatipudi M.K., Varunkumar S. // Proc. Combust. Inst. 2023. V. 39. P. 3479. https://doi.org/10.1016/j.proci.2022.08.031
  23. Lapuerta M., Hernandez J.J., Pazo A., Lopez J. // Fuel Proc. Technol. 2008. V. 89. No. 9. P. 828. https://doi.org/10.1016/j.fuproc.2008.02.001
  24. Kobayashi N., Suami A., Itaya Y. // J. Chem. Eng. Jpn. 2017. V. 50. No. 11. P. 862. https://doi.org/10.1252/jcej.16we266
  25. Itaya Y., Suami A., Kobayashi N. // AIP Conf. Proc. 2018. V. 1931. P. 020003. https://doi.org/10.1063/1.5024057
  26. Long H.A., Wang T. // Int. J. Energy Res. 2016. V. 40. No. 4. P. 473. https://doi.org/10.1002/er.3452
  27. Deraman M.R., Rasid E.A., Othman M.R., Suli L.N.M. // IOP Conf. Ser. Mat. Sci. Eng. 2019. V. 702. P. 012005. https://doi.org/10.1088/1757-899X/702/1/012005
  28. Uson S., Valero A., Correas L., Martinez A. // Int. J. Thermodynamics. 2004. V. 7. No. 4. P. 165.
  29. Perez-Jeldres R., Cornejo P., Flores M., Gordon A., Garcia X. // Energy. 2017. V. 120. P. 663. https://doi.org/10.1016/j.energy.2016.11.116
  30. Донской И.Г., Свищев Д.А., Шаманский В.А., Козлов А.Н. // Научн. вест. НГТУ. 2015. № 1 (58). С. 231. https://doi.org/10.17212/1814-1196-2015-1-231-245
  31. Donskoy I. // Energy Systems Research. 2021. V. 4. No. 2. P. 27. http://dx.doi.org/10.38028/esr.2021.02.0003
  32. Jahromi M.-A.Y., Atashkari K., Kalteh M. // Int. J. Energy Res. 2019. V. 43. No. 11. P. 5864. https://doi.org/10.1002/er.4692
  33. Hashimoto T., Sakamoto K., Ota K. et al. // Mitsubishi Heavy Industries Technical Review. 2010. V. 47. No. 4. P. 27.
  34. Watanabe H., Kurose R. // Advanced Powder Technology. 2020. V. 31. P. 2733. https://doi.org/10.1016/j.apt.2020.05.002
  35. HadiJafari P., Risberg M., Hesstrom J.G.I., Gebart B.R. // Energy Fuels. 2020. V. 34. P. 1870. https://doi.org/10.1021/acs.energyfuels.9b03942
  36. Chishty M.A., Umeki K., Risberg M., Wingren A., Gebart R. // Fuel Proc. Technol. 2021. V. 218. P. 106861. https://doi.org/10.1016/j.fuproc.2021.106861
  37. Козлов А.Н., Свищев Д.А., Худякова Г.И., Рыжков А.Ф. // ХТТ. 2017. № 4. С. 12. https://doi.org/10.7868/S0023117717040028 [Solid Fuel Chem. 2017. V. 51 P. 205. https://doi.org/10.3103/S0361521917040061]
  38. Han C., Situ Y., Zhu H. et al. // Chinese J. Chem. Eng. 2024. V. 68. P. 203. https://doi.org/10.1016/j.cjche.2023.12.010

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».