Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 60, № 9 (2019)

Article

Aromaticity and Induced Current Study of C8H8( n+2) (n = −6, −4, −2, 0): In the Viewpoint of Huckel’s Rule

Monajjemi M.

Аннотация

The (4n+2)π aromatic systems are studied in variants of C8H8( n+2) (n = −6, −4, −2, 0) via the localized orbital localization (LOL) and the electron localized function (ELF) by considering the induced current density. In this work, a four-electron dia-tropic (aromatic) ring current for (4n+2)π variants of C8H8( n+2) (n = −6, −4, −2, 0) and a two-electron paratropic (anti-aromatic) current for (4n)π arepredicted. With the HOMO and LUMO energies and also the HOMO/LUMO overlap in the whole space, it is possible to predict the transition states from delocalized currents in carbocyclic compounds to nitrogen-localized currents in all heterocyclic compounds in viewpoint of aromaticity and antiaromaticity. In addition, NICS and SNICS values confirm the degree of aromaticity and antiaromaticity in these rings.

Journal of Structural Chemistry. 2019;60(9):1361-1374
pages 1361-1374 views

Compositional Homogeneity and Optical Properties of Stoichiometric Lithium Niobate Crystals of Various Geneses

Sidorov N., Palatnikov M., Bobreva L.

Аннотация

It is shown that the method of high temperature top-seeded solution growth (HTTSSG) can be used to obtain near stoichiometric LiNbO3 crystals from a congruent melt with the addition of 6.0 wt.% of the K2O flux. The structure of complex defects containing OH groups in these crystals is close to those in stoichiometric crystals grown from a melt containing ∼ 58.6 mol.% of Li2O. However, the former are significantly superior to the latter in terms of total optical and structural homogeneity. The obtained crystals are studied using laser conoscopy, photoinduced light scattering, measuring the fundamental absorption edge, IR absorption spectroscopy in the region of OH stretchings, Raman spectroscopy in the region of two-particle states of acoustic phonons with zero total wave vector.

Journal of Structural Chemistry. 2019;60(9):1375-1384
pages 1375-1384 views

Bis-Hexaaquasodium Decaaqua-Monohydrogen-Hexasodium-Gadolinium-bis-(Nitrilo-Tris-Methylenephosphonate) Tetrahydrate: Synthesis, Structure, Chemical Bonding

Somov N., Chausov F., Lomova N., Vorobyov V., Zakirova R., Petrov V., Shumilova M., Zhirov D.

Аннотация

Bis-hexaaquasodium decaaqua-monohydrogen-hexasodium-gadolinium-bis-(nitrilo-tris-methylenephosphonate) tetrahydrate [Na(H2O)6]2[GdNa6H(H2O)10{N(CH2PO3}2]·4H2O (space group P21/c, Z = 2, a = 11.8168(7) Å, b = 10.5403(9) Å, c = 19.8094(10) Å, β = 94.232(5)) has been synthesized and isolated. The Gd3+ ion is coordinated in the configuration of an elongated rhombohedron in the environment of two acid residues {N(CH2PO3)3}. Two rhombohedron’s vertices distant from its center are occupied by nitrogen atoms, and six nearest vertices are occupied by oxygen atoms. Six sodium ions form inorganic bridges P-O-Na-O-P. The structure of the obtained complex is confirmed spectroscopically. XPS data indicate the formation of coordination bonds Gd-N and multiple bonds Gd-O.

Journal of Structural Chemistry. 2019;60(9):1385-1395
pages 1385-1395 views

Crystal, Molecular, Electronic Structures and Spectroscopic Characteristics of N-Hydroxyamide of 3-[3,3-Dimethyl-1,2,3,4-Tetrahydroisoquinolin-1-Iden]-2-Oxopropanoic Acid

Davydov V., Polyakova E., Ryabov M., Mikhailovskii A., Dorovatovsky P., Zubavichus Y., Khrustalev V.

Аннотация

X-ray crystallography, quantum chemical modeling, IR, and electron spectroscopy methods are used to establish the structure of N-hydroxyamide of 3-[3,3-dimethyl-1,2,3,4-tetrahydroisoquinolin-1-iden]-2-oxopropanoic acid (1) possessing antifungal activity. It is shown that compound 1 exists in the form of an enamino-ketone-hydroxamic isomer in both crystalline state and solutions. The total charges on the atoms of the tetrahydroisoquinoline fragment and the atoms of the substituent in position 1 in molecule 1 are +0.425 e and −0.425 e, respectively. The structural and spectroscopic characteristics can be used in the studies of similar compounds.

Journal of Structural Chemistry. 2019;60(9):1396-1406
pages 1396-1406 views

Experimental and Theoretical Study of the Raman Spectra of Ganoderic Acid T

He H., Yao G., Ma Y., Feng N., Zhou S., Huang Q.

Аннотация

Ganoderic acid T (GAT) has many pharmacological functions such as antitumor and antimycobacterial activity. However, to the best of our knowledge, no commercial high-purity GAT is available and the experimental and theoretical study of the Raman spectrum of GAT has never been reported up to date. Therefore, in this work, we extracted GAT and purified from Ganoderma lucidum mycelia, measured its Raman spectrum and analyzed it based on the density functional theory (DFT) calculation at the B3LYP/6-311+G(d,p) level. The research on the molecular, structural, and spectral properties may provide deeper insights into the functions and better applications of GAT.

Journal of Structural Chemistry. 2019;60(9):1407-1415
pages 1407-1415 views

Frequency Dispersion of the Electroelasticity Modulus in Aqueous Electrolyte Solutions

Odinaev S., Akdodov D., Idibegzoda K.

Аннотация

Friction coefficients βa and βb, relaxation times τa, τb, τab, and ∈(ω) for aqueous solutions of LiCl, NaCl, KCl, RbCl, CsCl are numerically calculated as functions of concentration c, density ρ, and temperature T in a wide range of frequencies ω using analytical expression for the electroelasticity modulus ∈(ω) obtained previously in the case of exponentially relaxing flows for a specific form of potential energy corresponding to the interaction between structural units of solution Φab(r) and the equilibrium radial distribution function gab(r). The obtained theoretical data are presented in the form of tables and graphs and are shown to be in a satisfactory agreement with experimental results.

Journal of Structural Chemistry. 2019;60(9):1421-1429
pages 1421-1429 views

Estimating Crystality Index of Microcrystalline Cellulose Using Diffraction Methods

Yatsenko D., Medvedeva T.

Аннотация

Microcrystalline cellulose samples are studied by X-ray diffraction. The technique of the diffraction experiment allows achieving higher accuracy and reliability when interpreting the data obtained for plant materials. The determined crystallinity indices of cellulose are compared using several X-ray techniques.

Journal of Structural Chemistry. 2019;60(9):1430-1436
pages 1430-1436 views

Structural Studies of Lake Baikal Natural Gas Hydrates

Manakov A., Khlystov O., Hachikubo A., Minami K., Yamashita S., Khabuev A., Ogienko A., Ildyakov A., Kalmychkov G., Rodionova T.

Аннотация

The structure of near-bottom gas hydrate samples obtained in Lake Baikal during the expeditions in 2005–2018 are reported. The hydrates contain mainly methane and ethane. More than 85% of the samples contain hydrate of cubic structure I (sI) with up to 4.2 mol.% ethane. The concentration of ethane in the samples containing hydrate of cubic structure II (sII) is 12–14 mol.%. Refined unit cell parameters of natural hydrates are in good agreement with the data obtained in the studies of artificially synthesized hydrates. Possible mechanisms for the formation of sII hydrates are discussed. Some arguments are provided in favor of a probable presence of dispersed gas hydrates in the near-bottom layers of Baikal sediments and the possibility of small variations in the composition of hydrate gas in different hydrate fragments taken from the same hydrate layer.

Journal of Structural Chemistry. 2019;60(9):1437-1455
pages 1437-1455 views

Synthesis, Crystal Structure, and Optical Property of Ce4InSbS9

Zhao H., Qin B.

Аннотация

Quaternary sulfide Ce4InSbS9 is prepared at 1223 K in an evacuated silica tube. It crystallizes in the chiral tetragonal space group P41212 (No. 92) with a = 10.1961(3) Å, c = 28.128(2) Å, V = 2924.2(2) Å3, Dcalc = 4.932 g/cm3, and Z = 8. The structure features infinite 21 helical chains [In2Sb2S1110−] propagating along the c direction separated by Ce3+ cations and S2− anions. The UV/Vis diffuse reflectance spectroscopy study shows that the optical gap of Ce4InSbS9 is about 2.07 eV, showing a red shift with respect to corresponding sulfide La4InSbS9, which is attributed to the allowed electronic transfer from the narrow Ce4f level to the conduction band, mainly built from empty Ce5d orbitals. The magnetic susceptibility measurement indicates antiferromagnetic interactions between Ce3+ cations.

Journal of Structural Chemistry. 2019;60(9):1456-1462
pages 1456-1462 views

New Chalcogenide Cobalt Complexes with Diimine Ligands: Synthesis and Crystal Structure

Konokhova A., Afonin M., Sukhikh T., Konchenko S.

Аннотация

Reactions of a low-valent cobalt complex [Co(nacnac)(η6-C7H8)] (1) ((nacnac) = (HC(C(Me)NC6H3-iPr2)2)) with selenium and tellurium are studied. Two new binuclear complexes [(Co(nacnac))2(μ,η2-Se2)] (2) and [(Co(nacnac))2(μ,η2-Te2)] (3) have been isolated and characterized. The structures of the complexes are determined by single crystal X-ray diffraction.

Journal of Structural Chemistry. 2019;60(9):1463-1467
pages 1463-1467 views

Network Coordination Polymers Based on Thieno[3,2-b]Thiophene-2,5-Dicarboxylic Acid

Samsonova A., Bolotov V., Samsonenko D., Dybtsev D., Fedin V.

Аннотация

Heating the solutions of Mn(II), Cd(II) salts and thieno[3,2-b]thiophene-2,5-dicarboxylic acid (H2[3,2-b]ttdc) in N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMA) results in the formation of crystalline complex compounds [Mn2([3,2-b]ttdc)2(dmf)2]·4DMF (1), [Cd2([3,2-b]ttdc)2(dmf)2]·2DMF (2), and [Mn2([3,2-b]ttdc)2(dma)2]·2[Mn(dma)6](ClO4)2 (3). According to the X-ray diffraction data, the compounds are two-dimensional layered coordination polymers with square network topologies. In compounds 1 and 2 the layers are shifted relative to each other, while in 3 the layers are located exactly one above another to form extended 9.5×13.0 Å channels occupied by solvated [Mn(dma)6]2+ complex cations and perchlorate ClO4 anions located mainly near thienothiophene groups.

Journal of Structural Chemistry. 2019;60(9):1468-1473
pages 1468-1473 views

Polyazamacrocyclic Copper-Based Cyanide-Bridged Bimetallic Sandwich-Like Complexes: Synthesis, Crystal Structure, and Magnetic Properties

Lan W., Dou Y., Wang X., Si W., Zhou Z., Zhuang S., Liu H., Liu Q., Zhang D.

Аннотация

By employing three dicyanometallates as building blocks (K[Fe(bpb)(CN)2], K[Cr(bpb)(CN)2] (bpb2− = 1,2-bis(pyridine-2-carboxamido)benzenate), K[Fe(bpmb)(CN)2] (bpmb2− = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate)) and one 14-membered polyazamacrocycle Cu(II) compound as an assembling segment, three cyanide-bridged complexes {[Cu(6,13-dihydroxylcyclam)][Fe(bpb)(CN)2]2}·2CH3OH·H2O (1), {[Cu(6,13-dihydroxylcyclam][Cr(bpb)(CN)2]2}·2CH3OH (2), and {[Cu(6,13-dihydroxylcyclam)][Fe(bpmb) (CN)2]2}·2H2O (3) (6,13-dihydroxylcyclam = 6,13-dihydroxyl-1,4,8,11-tetraazacyclotetradecane) are successfully prepared and characterized by elemental analysis, IR spectroscopy and X-ray structure determination. The single X-ray diffraction analysis shows that all the three complexes containing the M2Cu (M = Fe, Cr) core have neutral trinuclear sandwich-like structures in which the central Cu(II) ion is face-to-face coordinated to two Fe or Cr ions of the cyanide precursors functioning as a monodentate ligand through one of its two cyanide groups. The investigation of their magnetic properties reveals the antiferromagneitic and ferromagnetic coupling between the cyanide-bridged Fe(III)-Cu(II) and Cr(III)-Cu(II) ions, respectively.

Journal of Structural Chemistry. 2019;60(9):1474-1481
pages 1474-1481 views

Synthesis and Crystal Structure of Chloride complexes of Rh(III) Diammino- and Monoammino Series

Baidina I., Belyaev A., Korolkov I., Smolentsev A., Vorobieva S.

Аннотация

Complex compounds cis-K[Rh(NH3)2Cl4]·KCl (I), cis-K[Rh(NH3)2Cl3(NO2)] (II), and K2[Rh(NH3)Cl5] (III) are synthesized. The single crystal X-ray diffraction analysis of the compounds obtained is performed at T = 296 K. Crystallographic data for I are: a = 11.822(5) Å, b = 11.608(5) Å, c = 8.196(4) Å, β = 107.56(2)°, space group C2/m, Z = 4, dcalc = 2.431 g/cm3. For II: a = 8.946(3) Å, b = 5.941(2) Å, c = 8.182(3) Å, space group Pmn21, Z = 2, dcalc= 2.509 g/cm3. For III: a = 13.464(6) Å, b = 9.989(4) Å, c = 6.932(3) Å, space group Pnma, Z = 4, dcalc = 2.675 g/cm3. The compounds are characterized by IR spectroscopy, powder X-ray diffraction, and chemical analysis.

Journal of Structural Chemistry. 2019;60(9):1482-1488
pages 1482-1488 views

Main Alkaloids of Securinega suffruticosa. Nitrogen Atom Inversion in Securinine

Kurbanov U., Tashkhodjaev B., Levkovich M., Bruskov V., Mukarramov N., Abdullaev N.

Аннотация

The main alkaloids such as securinine (1), allosecurinine (2), and securitinine (3) are isolated from the Securinega suffruticosa plant and identified by spectral techniques. The spatial structure of 3 is determined by single crystal XRD. The inversion of the pyramidal-tetrahedral nitrogen atom of compound 1 in the crystal and the solution is analyzed based on single crystal XRD and NMR spectroscopy data. By the computational methods and NMR spectroscopy it is shown that the configuration of the nitrogen atom in securinine is related to the alkaloid salt formation rather than the crystal field effect (packing factor).

Journal of Structural Chemistry. 2019;60(9):1489-1495
pages 1489-1495 views

A Complex Powder X-Ray Diffraction Study of Copper-Cerium Oxide Catalysts Prepared by the Pechini Method

Pakharukova V., Moroz E., Potemkin D., Snytnikov P.

Аннотация

By means of a complex of powder X-ray diffraction techniques the features of the structural organization of highly dispersed copper-cerium CuO-CeO2 catalysts prepared by the Pechini method are studied. The current structural technique for studying nanomaterials, namely the atomic pair (interatomic distances) distribution function analysis, is used to refine the phase composition of materials with revealing highly dispersed compounds, sizes of atomic ordering regions, and possible defects. It is shown that materials synthesized from polymeric precursors represent mixed CuO-CeO2 oxides with a high concentration of structural defects. Highly dispersed individual copper compounds are not detected. The results obtained support the previous assumptions that copper cations can incorporate into the structure of cerium dioxide in the composition of copper-cerium catalysts.

Journal of Structural Chemistry. 2019;60(9):1496-1506
pages 1496-1506 views

Structure Formation Model in the Pt/C-CNT-Nafion System

Nechitailov A., Glebova N., Krasnova A.

Аннотация

Based on the data of electron scanning and transmission microscopy, X-ray energy-dispersive spectroscopy (EDS), voltammetry, and electrochemical impedance spectroscopy the structures of composite electrode materials are modeled. Materials with a mixed (electron and proton) conductivity, which contain platinum nanoparticles on carbon black (Pt/C, electron conductor), the proton-conducting polymer Nafion (fluorocarbon polymer containing sulfo groups), and two types of additives of nanostructured carbon materials (carbon nanotubes (CNTs) and thermally expanded graphite (TEG)) are investigated. Concentration profiles of elements (EDS data) obtained by scanning sample surfaces and features of the dependences of the electrochemically active platinum surface area and concentration dependences of the electron and proton resistance on the Nafion concentration in the material are analyzed. It is shown that the structure of the material, in particular, the proton-conducting polymer Nafion, depends on the type of the additive. Structural models of the materials studied are proposed.

Journal of Structural Chemistry. 2019;60(9):1507-1519
pages 1507-1519 views

Molecular Dynamics Simulation Evaluating the Hydrophilicity of Nanowollastonite on Cellulose

Majidi R., Taghiyari H., Abdolmaleki D.

Аннотация

To clarify the effect of nanowollastonite on the hydrophilicity of wood and wood-composite, water adsorption on the cellulose surface in the presence of nanowollastonite is investigated using a molecular dynamics method. The simulations reveal the adsorption of nanowollastonite on the cellulose surface. When nanowollastonite-cellulose gets into contact with water molecules, new hydrogen bonds form between nanowollastonite and water molecules. Consequently, the hydrogen bonds between nanowollastonite and the cellulose surface are weakened and eventually broken. As the exposure to water molecules is continued, water molecules rapidly form more hydrogen bonds with cellulose. Close agreement is found between the previous experimental observations and the theoretical results of the present research. It is concluded that nanowollastonite can only decrease the cellulose hydrophilicity for a short time.

Journal of Structural Chemistry. 2019;60(9):1520-1527
pages 1520-1527 views

Erratum

Erratum to: Synthesis and Structural Characterization of a Monomeric Mixed Ligand Copper(II) Complex Involving N,N,N′,N′-Tetramethylethylenediamine and Mefenamate

Batool S., Gilani S., Zainab S., Tahir M., Harrison W., Syed Q., Mazhar S.

Аннотация

In the original article there was a mistake in the information of the corresponding author. The correct spelling of the names of the authors and their order is: S. S. Batool1,2*, S. R. Gilani1, S. S. Zainab2, M. N. Tahir3, W. T. A. Harrison4, Q. Syed5, and S. Mazhar5

Journal of Structural Chemistry. 2019;60(9):1528-1528
pages 1528-1528 views

Erratum to: Synthesis, Crystal Structure, and DFT Study of 4-(3,5-Dimethylisoxazol-4-YL)benzene-1,2-Diol

Long D., Qin Y., Wu Q., Zou X., Zhou Z.

Аннотация

In the original article online there was an error in Fig.1. The following is the correct Fig. 1.

Journal of Structural Chemistry. 2019;60(9):1529-1529
pages 1529-1529 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».