Phenomenon of the ousting of a monatomic ion from its hydration shell in flat nanopores


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The structure and stability of hydrate shells of singly charged sodium and chlorine ions are studied by computer simulations under the conditions of nanoscopic flat pores with the use of the previously proposed detailed force field model containing polarization interactions, transferring charge effects as well as manybody interactions of covalent type. It is found that the effect of ousting a monatomic ion from its hydration shell, which has previously been observed by independent authors in bulk vapor, is also reproduced persistently in nanoscopic pores. Whereas the ousting of the ion from its hydration shell in bulk vapor is accompanied by the loss of thermodynamic stability of the system and at sufficiently high vapor pressure causes avalanche-like condensation, under the conditions of a nanoscopic pore the thermodynamic stability is retained. The obtained data show that the ousting of the ion from its hydration shell is a universal phenomenon covering the majority, if not all, of monatomic and, possibly, some of molecular ions.

作者简介

S. Shevkunov

Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: shevk54@mail.ru
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016