Colloidal quantum dots InP@ZnS: Inhomogeneous broadening and distribution of luminescence lifetimes


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Indium phosphide colloidal quantum dots with a zinc sulfide shell, an average core diameter of 3 nm, a luminescence peak position of 600 nm, and a luminescence quantum yield up to 50% have been synthesized. By analyzing the stationary absorption and luminescence spectra in terms of the Kennard—Stepanov relationship, the values of homogeneous width and inhomogeneous broadening have been obtained, which determine the resulting width of the spectra: the corresponding full widths at half maximum (FWHM) were 31, 63, and 70 nm. From the value of inhomogeneous broadening and the sizing curve of indium phosphide, polydispersity of the synthesized particles has been estimated as 11%. Analysis of the luminescence decay kinetics has revealed three reproducible peaks with maxima near 4.35, 35 (main) and 200 ns in the lifetime distribution. It has been found that although repeated washing of the synthesized particles with methanol can decrease the quantum yield, the lifetime distribution observed remains constant, which in the context of the “blinking” effect indicates a very short luminescence decay time of the particles in the OFF-state.

About the authors

S. B. Brichkin

Institute of Problems of Chemical Physics

Author for correspondence.
Email: brichkin@icp.ac.ru
Russian Federation, pr. Akademika Semenova 1, Chernogolovka, Moscow oblast, 142432

M. G. Spirin

Institute of Problems of Chemical Physics

Email: brichkin@icp.ac.ru
Russian Federation, pr. Akademika Semenova 1, Chernogolovka, Moscow oblast, 142432

S. A. Tovstun

Institute of Problems of Chemical Physics

Email: brichkin@icp.ac.ru
Russian Federation, pr. Akademika Semenova 1, Chernogolovka, Moscow oblast, 142432

V. Yu. Gak

Institute of Problems of Chemical Physics

Email: brichkin@icp.ac.ru
Russian Federation, pr. Akademika Semenova 1, Chernogolovka, Moscow oblast, 142432

E. G. Mart’yanova

Institute of Problems of Chemical Physics

Email: brichkin@icp.ac.ru
Russian Federation, pr. Akademika Semenova 1, Chernogolovka, Moscow oblast, 142432

V. F. Razumov

Institute of Problems of Chemical Physics

Email: brichkin@icp.ac.ru
Russian Federation, pr. Akademika Semenova 1, Chernogolovka, Moscow oblast, 142432

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.