THE MAIN STAGES OF THE FRAM STRAIT FORMATION IN THE NEOGENE: ANALYSIS OF GEOLOGICAL AND GEOPHYSICAL DATA

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The opening of the Fram Strait began in the Early Miocene (~19.5 Ma) as a result of movements of the North American and Eurasian lithospheric plates, which resulted in the formation of the narrowest segment of the strait, the Lena Trough. In the Miocene (~19.5–9.8 Ma), the opening of the central part of the Fram Strait led to formation of the central and northwestern parts of the Molloy Basin, which had an extended basement consisting of blocks of the West Spitsbergen fold-and-thrust belt. In the Late Miocene (~9.8 Ma), in the central part of the Fram Strait, a jump in the axis of its opening to the east occurred in the segments between the Molloy and Spitsbergen transform faults, and spreading began in the northernmost segment of the Knipovich Ridge. In the Late Miocene (~9.8 Ma), the deep-sea exchange of waters between the North Atlantic and the Arctic Ocean took place west of the Barents Sea continental “fragments” – the Hovgaard Ridge and Mount Hovgaard. In the Late Miocene (~6.7 Ma), the Molloy Basin began to open, which coincides with the beginning of the continuous subsidence of the Hovgaard Ridge, which was in subaerial conditions, and with a three-fold increase in the sedimentation rate in the central part of the Molloy Basin. In the Late Miocene‒Early Pleistocene (~9.8‒1.8 Ma), a warm current from the North Atlantic could have passed along the eastern continental margin of Greenland and, at the peak of its maximum intensity, ensured the existence of biological diversity in the conditions of the “polar desert” and “polar night” in the north‒northeast of Greenland and the shallow sea areas adjacent to the coast. The modern direction of the cold and warm currents in the Fram Strait could have formed in the Early Pleistocene (~1.8 Ma) and be associated with the opening of the northernmost segment of the Knipovich Ridge.

Авторлар туралы

A. Zayonchek

Geological Institute of Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: a_zayonchek@mail.ru
bld. 7, Pyzhevsky per., 119017 Moscow, Russia

S. Sokolov

Geological Institute of Russian Academy of Sciences

Email: a_zayonchek@mail.ru
bld. 7, Pyzhevsky per., 119017 Moscow, Russia

A. Soloviev

Geological Institute of Russian Academy of Sciences; All–Russian Research Geological Oil Institute

Email: a_zayonchek@mail.ru
bld. 7, Pyzhevsky per., 119017 Moscow, Russia; bld. 36, Shosse Entuziastov, 105118 Moscow, Russia

E. Vasilieva

SEUS Geoservices AS

Email: a_zayonchek@mail.ru
Hoffsjef Løvenskiolds vei 25B, 0382, Oslo, Norway

S. Shkarubo

Marine Arctic Geological Expedition, JSC (MAGE)

Email: a_zayonchek@mail.ru
bld. 26, st. Sofia Perovskaya, 183038 Murmansk, Russia

Әдебиет тізімі

  1. Батурин Д.Г., Нечхаев С.А. Глубинное строение Шпицбергенского краевого плато северо-восточной части Гренландского моря // ДАН СССР. 1989. Т. 306. № 4. С. 925–930.
  2. Гусев Е.А., Шкарубо С.И. Аномальное строение хребта Книповича // Российский журнал Наук о Земле. Т.3. № 2. 2001. С. 145–161. doi: 10.2205/2001ES000056
  3. Зайончек А.В., Соколов С.Ю., Соловьев А.В. Эволюция Евразийского бассейна в дочетвертичное время: результаты интерпретации сейсмического профиля ARC1407A // Геотектоника. 2023. № 6. С 3–42. doi: 10.31857/S0016853X23060085
  4. Казанин Г.С., Тарасов Г.А., Федухина Т.Я., Шлыкова В.В., Матишов Г.Г. Западно-Шпицбергенская континентальная окраина: геологическое строение, нефтегазоносность // ДАН. 2015. Т. 460. №2. С 3–42. doi: 10.7868/S086956521502019X
  5. Кохан А.В., Дубинин Е.П., Грохольский А.Л., Абрамова А.С. Кинематика и особенности морфоструктурной сегментации хребта Книповича // Океанология. 2012. Т. 52. № 5. С. 744–756.
  6. Соколов С.Ю. Тектоническая эволюция хребта Книповича по данным аномального магнитного поля // ДАН. 2011. Т. 437. № 3. С. 378–383.
  7. Пейве А.А., Чамов Н.П. Основные черты тектоники хребта Книповича (Северная Атлантика) и история его развития на неотектоническом этапе // Геотектоника. 2008. № 1. С. 38–57.
  8. Шипилов Э.В. Базальтоидный магматизм и проблема газоносности Восточно-Баренцевского мегабассейна // Арктика: экология и экономика. 2018. Т. 30. № 2. С. 94‒106. doi: 10.25283/2223-4594-2018-2-94-106
  9. Amundsen I.M.H., Blinova M., Hjelstuen B.O., Mjelde R., Haflidason H. The Cenozoic western Svalbard margin: sediment geometry and sedimentary processes in an area of ultraslow oceanic spreading // Marin. Geophys. Res. 2011. Vol. 32. N 4. P. 441–453. doi: 10.1007/s11001-011-9127-z
  10. Backman J., Jakobsson M., Frank M., Sangiorgi F., Brinkhuis H., Stickley C., O’Regan M., Lovlie R., Palike H, Spofforth D., Gattacecca J., Moran K., King J., Heil C. Age model and core-seismic integration for the Cenozoic ACEX sediments from the Lomonosov Ridge // Paleoceanography. 2008. Vol. 23. P. 1–15. Doi: https://doi.org/10.1029/2007PA001476
  11. Balmino G., Vales N., Bonvalot S. and Briais A. Spherical harmonic modeling to ultra-high degree of Bouguer and isostatic anomalies // J. Geodes. July 2012. Vol. 86. No. 7. P. 499‒520. Doi: https://doi.org/10.1007/s00190-011-0533-4
  12. Breivik A., Mjelde R., Grogan P., Shimamura H., Murai Y., Nishimura Y. Crustal structure and transform margin development south of Svalbard based on ocean bottom seismometer data // Tectonophysics. 2003. Vol. 369. P. 37–70. Doi: https://doi.org/10.1016/S0040-1951(03)00131-8
  13. Crane K., Doss S., Vogt P., Sundvor E., Cherkashov I.P., Devorah J. The role of the Spitsbergen shear zone in determining morphology, sedimentation and evolution of the Knipovich Ridge // Marin. Geophys. Res. 2001. Vol. 22. P. 153–205. doi: 10.1023/A:1012288309435
  14. Czuba W., Ritzmann O., Nishimura Y., Grad M., Mjelde R., Guterch A., Jokat W. Crustal structure of the continent–ocean transition zone along two deep seismic transects in north−western Spitsbergen // Polish Polar Res. 2004. Vol. 25. No. 3-4. P. 205–221.
  15. Dumais M.-A., Gernigon L., Olesen O., Johansen S.E., Bronner M. New interpretation of the spreading evolution of the Knipovich Ridge derived from aeromagnetic data // Geophys. J. Int. 2021. Vol. 224. P. 1422–1428. Doi: https://doi.org/10.1093/gji/ggaa527
  16. Dumais M.-A., Gernigon L., Olesen O., Lim A., Johansen S.E., Brönner M. Crustal and thermal heterogeneities across the Fram Strait and the Svalbard margin // Tecto­nics. 2022. Vol. 41. e2022TC007302. P. 1‒29. Doi: https://doi.org/10.1029/2022TC007302
  17. Ehlers B., Jokat W. Subsidence and crustal roughness of ultra-slow spreading ridges in the northern North Atlantic and the Arctic Ocean // Geophys. J. Int. 2009. Vol. 177. No.2. P. 451–462. doi: 10.1016/j.tecto.2015.12.002
  18. Engen Ø., Faleide J.I., Dyreng T.K. Opening of the Fram Strait gateway: A review of plate tectonic constraints // Tectonophysics. 2008. Vol. 450. P. 51–69. Doi: https://doi.org/10.1016/j.tecto.2008.01.002
  19. Gruetzner J., Matthiessen J., Geissler W.H., Gebhardt A.C., Schreck M. A revised core-seismic integration in the Molloy Basin (ODP Site 909): Implications for the history of ice rafting and ocean circulation in the Atlantic‒Arctic gateway // Global and Planet. Change. 2022. Vol. 215. Article № 103876. doi: 10.1016/j.gloplacha.2022.103876
  20. Harland W.B. The Geology of Svalbard – Ed. by W.B. Harland, (Geol. Soc. London, UK. 1998. Geol. Surv. Mem. Is.17), 521 p.
  21. Jakobsson M., Backman J., Rudels B., Nycander J., Frank M., Mayer L., Jokat W., Sangiorgi F., O’Regan M., Brinkhuis H., King J., Moran K. The early Miocene onset of a ventilated circulation regime in the Arctic Ocean // Nature. 2007. Vol. 447. P.986‒990. Doi: 10.1038/nature05924' target='_blank'>https://doi: 10.1038/nature05924
  22. Jakobsson M., Mayer L.A., Bringensparr C. et al. The International Bathymetric Chart of the Arctic Ocean. Version 4.0 // Scientific Data. 2020. Vol. 176. No. 7. Doi: https://doi.org/10.1038/s41597-020-0520-9
  23. Faleide J.I., Solheim A., Fiedler A., Hjelstuen B.O., Andersen E. S., Vanneste K. Late Cenozoic evolution of the western Barents Sea‒Svalbard continental margin // Global Planet. Change. 1996. Vol. 12. P. 53–74. doi: 10.1016/0921-8181(95)00012-7
  24. Kjær K.H., Pedersen M.W., De Sanctis B., De Cahsan B., Korneliussen T. S., Michelsen C.S., Sand K.K., Jelavić S., Ruter A.H., Schmidt A.M.A., Kjeldsen K.K., Tesakov A.S., Snowball Ian, Gosse J.C., Alsos I.G., Wang Y., Dockter C., Rasmussen M., Jørgensen M.E., Skadhauge B., Prohaska A., Kristensen J.Å., Bjerager M., Allentoft M.E., Coissac E., PhyloNorway Consortium, Rouillard A., Simakova A., Fernandez-Guerra A., Bowler C., Macias-Fauria M., Vinner L., Welch J.J., Hidy A.J., Sikora M., Collins M.J., Durbin R., Larsen N.K., Willerslev E. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA // Nature. 2022. Vol. 612. P. 283–296. Doi: https://doi.org/10.1038/s41586-022-05453-y
  25. Knies J., Mattingsdal R., Fabian K., Grøsfjeld K., Baranwal S., Husum K., De Schepper S., Vogt C., Andersen N., Matthiessen J., Andreassen K., Jokat W., Nam S.-I., Gaina C. Effect of early Pliocene uplift on late Pliocene cooling in the Arctic–Atlantic gateway // Earth Planet. Sci. Lett. 2014. Vol. 387. P.132–144. Doi: https://doi.org/10.1016/j.epsl.2013.11.007
  26. Knies J., Gaina, C. Middle Miocene ice sheet expansion in the Arctic: views from the Barents Sea // Geochem. Geophys. Geosyst. (G3). 2008. Vol. 9. Is. 2. Q02015. Doi: https://doi.org/10.1029/2007GC001824
  27. Knies J., Matthiessen J., Vogt C., Laberg J.S., Hjels­tuen B.O., Smelror M., Larsen E., Andreassen K., Eidvin T., Vorren T.O. The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: a new model based on revised chronostratigraphy // Quaternary Sci. Rev. 2009. Vol. 28. No. 9. P. 812–829. Doi: https://doi.org/10.1016/j.quascirev.2008.12.002
  28. Krysiński L., Grad M., Mjelde R., Czuba W. and Guterch A. Seismic and density structure of the lithosphere−asthenosphere system along transect Knipovich Ridge−Spitsbergen−Barents Sea – geological and petrophysical implications // Polish Polar Res. 2013. Vol. 34. № 2. P. 111–138. doi: 10.2478/popore−2013−0011
  29. Kvarven T., Hjelstuen B.O. Mjelde R. Tectonic and sedimentary processes along the ultraslow Knipovich spreading ridge // Marin. Geophys Res. 2014. Vol. 35. P. 89–103. Doi: https://doi.org/10.1007/s11001-014-9212-1
  30. Merkouriev S., DeMets C. High-resolution Quaternary and Neogene reconstructions of Eurasia‒North America plate motion // Geophys. J. Int. 2014. Vol. 198. P. 366–384. Doi: https://doi.org/10.1093/gji/ggu142
  31. Myhre A.M., Thiede J., Firth J.V., Johnson G.L., Ruddiman W.F. Ocean Drilling Program. – In: Proceedings ODP, (College Station. Texas A&M Univ., USA. 1995. Initial Rep. No. 151).
  32. Lasabuda A.P.E., Johansen N.S., Laberg J.S., Faleide J.I., Senger K., Rydningen T.A., Hanssen A. Cenozoic uplift and erosion of the Norwegian Barents Shelf – A review // Earth-Sci. Rev. 2021. Vol. 217. P.1‒35. Doi: 10.1016/j.earscirev.2021.103609' target='_blank'>http://doi: 10.1016/j.earscirev.2021.103609
  33. Libak A., Eide C. H., Mjelde R., Keers H., Flüh E.R. From pull-apart basins to ultraslow spreading: Results from the western Barents Sea Margin // Tectonophysics. 2012. Vol. 514–517. P. 44–61. Doi: https://doi.org/https://doi.org/10.1016/j.tecto.2011.09.020
  34. Ogg J. Geomagnetic polarity time scale. – In: The Geologic Time Scale‒2020. – Ed.by F.M. Gradstein, J.G. Ogg, M.D. Schmitz, G.M. Ogg, (Elsevier Sci. Oxford. UK. 2020. Ch.5), P. 159‒192.
  35. Polteau S., Hendriks B.W., Planke S., Ganerod M., Corfu F., Faleide J.I., Midtkandal I., Svensen H.S., Myklebust R. The Early Morgan Cretaceous Barents Sea sill complex: Distribution,40Ar/39Ar geochronology, and implications for carbon gas formation // Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016. Vol. 441. P. 83–95. Doi: https://doi.org/10.1016/j.palaeo.2015.07.007
  36. Ritzmann O., Jokat W., Mjelde R., Shimamura H. Crustal structure between the Knipovich Ridge and the Van Mijenfjorden (Svalbard) // Marin. Geophys. Res. 2002. Vol. 23. P. 379–401. Doi: https://doi.org/10.1023/B:MARI.0000018168.89762.a4
  37. Vogt P.R. Geophysical and geochemical signatures and plate tectonics. –In: The Nordic Seas. – Ed.by B.G. Hurdle (Springer, NY. USA. 1986), P. 413–662.
  38. Vogt P.R., Taylor P.T., Kovacs L.C., Johnson G.L. Detailed aeromagnetic investigation of the Arctic Basin // J. Geophys. Res. 1979. Vol. 84 (B3). P. 1071–1089.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».