Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 67, No 3 (2025)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Articles

Петрология и рудообразование. К 100-летию А. А. Маракушева

Bortnikov N.S., Aranovich L.Y., Paneiah N.A., Vikentyev I.V.
Geologiâ rudnyh mestoroždenij. 2025;67(3):227-232
pages 227-232 views

Orogenic gold-ore deposits of Taimyr-Severnaya Zemlya province, Russia

Proskurnin V.F., Palyanova G.A., Borovikov A.A., Bortnikov N.S.

Abstract

The paper presents geological and genetic typification of gold orogenic mineral deposits of Taimyr-Severnaya Zemlya associated with accretionary processes in the Precambrian and collisional ones in the Late Paleozoic. Gold-bearing mineral associations of gold-quartz and gold-sulfide-quartz deposits of accretionary formations of the Precambrian Shrenk-Faddei (Yasnenskoe, Malinovskoe) and collisional Mininsko-Bolshevistskaya (Nizhnelitkenskoe, Vidimoe, Nerpichye, Konechninskoe) mineragenic zones have been studied. Studies of fluid inclusions have made it possible to establish the main RTX parameters of gold ore mineralization formation. The main ore-generating processes for the orogenic-accretionary epoch are greenschist regional-dislocation metamorphism; for the orogenic-collisional epoch - plutonogenic-metamorphogenic and plutonogenic granitoid magmatism. The obtained data indicate the possibility of identifying two new geological and economic regions in the Central sector of the Russian Arctic.

Geologiâ rudnyh mestoroždenij. 2025;67(3):233-258
pages 233-258 views

Mineral composition of rare-metal metasomatic rocks of the Ufaley metamorphic complex (vein 175 of the Kyshtym quartz-vein deposit, Slyudorudnik, South Urals)

Sustavov S.G., Ogorodnikov V.N., Khanin D.A., Shagalov E.S.

Abstract

The article considers the geological position and mineral composition of rare-metal (TR) metasomatites with a pegmatoid structure and forming lenticular bodies. TR metasomatites are spatially and genetically related to carbonatites and form single bodies. The latter are spatially related and have the same geological position with industrial bodies of vein, granular quartz. Unlike cabonatites, metasomatites are crushed and boudinated. The uniqueness of metasomatites is due to unusually large xenotime crystals. Most minerals involved in the structure of metasomatites contain abnormally high isomorphic impurities of Y. In the composition of yttrium-bearing epidote and yttrium-bearing titanite, its amount is slightly more than 8 wt. % Y2O3. Fergusonite-(Y) and a mineral whose composition approaches the idealized formula YAlSiO5 are present as inclusions in yttrium titanite. In apatite-II, formed in certain areas during recrystallization (granulation) of apatite-I, the total content of yttrium and heavy rare earth elements significantly exceeds 10 wt. %. Fergusonite-(Y) and a microinclusion, the composition of which corresponds to a complex oxide with the formula Ca2Y2O5, are present as inclusions at the grain boundary. The unusual composition of metasomatites and the specific structure of TR-metasomatites indicate a long process of their formation and metasomatic nature. At present, metasomatite lenses occur in rocks that have undergone metamorphism at the level of amphibolite facies.

Geologiâ rudnyh mestoroždenij. 2025;67(3):259-286
pages 259-286 views

Formation conditions of the Yugo-Konevskoe and Porokhovskoe tungsten deposits (Southern Urals) based on microthermocryometry and mineralogical thermometry data

Belogub E.V., Mal’tseva K.P., Rogov D.A., Smolenskiy V.V., Bocharov V.N., Rassomakhin M.A., Kopeykina V.R.

Abstract

The article is devoted to the assessment of the formation conditions of the Yugo-Konevskoye and the Porokhovskoye deposits belonging to the same ore zone, localized in granites and in a metamorphosed volcanogenic-sedimentary sequence, respectively, and separated by a large thrust. According to the results of the study of fluid inclusions in quartz, the formation of quartz ± fluorite ± muscovite veins with hubnerite at both deposits was under similar conditions at minimum true temperatures of 245–540 °C and a pressure of ~ 350 bar, from carbon dioxide -water fluids of sodium-chloride composition with an admixture of KCl, KF and Ca and Mg carbonates, with a salt concentration of 0.54 to 16.13 wt. % NaCl-eq. CO2 predominates in the gas phase and impurities of CH4, N2 and H2S are recorded. The similarity of the mineral composition, fluid and muscovite composition in the ore veins indicates a single source of ore-bearing fluid for both deposits and an insignificant influence of the host rocks on it. The simultaneous presence of low-mineralized inclusions and inclusions with a solid phase indicates a phase separation, which is more pronounced at the Yugo-Konevskoye deposit. Late quartz in the skarns of the Porokhovskoye deposit was formed at lower temperatures than the ore veins and from solutions that contained a sulfate component, reflecting the probable assimilation of limestones from the host strata during skarnification. Low pressures estimated from FI are due to the formation of ore veins as a result of brittle deformations of consolidated rocks. The obtained PTX parameters of the fluids correspond to those characteristic of greisen formation objects, falling into the relatively low-pressure and low-temperature region.

Geologiâ rudnyh mestoroždenij. 2025;67(3):287-314
pages 287-314 views

The estimation of prospectivity of porphyry Cu-Mo-Au mineralization based on biotite composition (on example of the Shakhtama Mo-porphyry and Bystrinsky Cu-Au-Fe-porphyry-skarn deposits, eastern Transbaikalia, Russia)

Vesnin V.S., Nevolko P.A., Svetlitskaya T.V., Shapovalova M.O.

Abstract

Economical mineralization of the Bystrinsky Сu-Аu-Fе-porphyry-skarn and Shakhtama Мо-роrрhуrу deposits is confined to multiphase granitoid plutons of the Middle-Late Jurassic Shakhtama complex. The composition of biotite from magmatic rocks of ore-bearing and barren intrusions has been studied to identify the specifics of Cu-Au porphyry and Mo porphyry mineralization. The magmatic origin of the studied biotite and the absence of secondary processes have been demonstrated. Biotite from ore-bearing intrusions of the Bystrinsky and Shakhtama deposits is characterized by high MgO content (>15 wt.%). Low values of IV(F) and IV(F/Cl) calculated from biotites of ore-bearing intrusions indicate enrichment of F and Cl in the fluid phase. It has been determined that the rocks of the ore stocks were formed from oxidized magmas. New data showed that published diagrams for biotite composition are incorrect for separating ore-bearing and barren rocks. Linear discriminant analysis was performed on the obtained biotite compositions of the Bystrinsky and Shakhtama deposits and the author's new discriminatory diagram was proposed. Unlike published diagrams, new discriminant diagram allows to be distinguished potentially ore-bearing intrusive complexes (and their type of mineralization) from barren intrusive complexes by biotite composition and can be used with other indicator minerals in the search for porphyry mineralization.

Geologiâ rudnyh mestoroždenij. 2025;67(3):315-336
pages 315-336 views

U-Pb age and zircon geochemistry of fertility-reduced granite on example of the Tam Dao tin ore district, Northeast Vietnam

Nevolko P.A., Svetlitskaya T.V., Pham Thi Dung -., Nguyen The Hau -., Tran Trong Hoa -., Fominykh P.A., Ngo Thi Phuong -.

Abstract

The Sn (-Cu) Tam Dao ore district is located at the southern margin of the South China Block within the Lo Gam structure at northeastern Vietnam. Genetically ore mineralization of the Tam Dao ore district is associated with the homonymous massif of biotite granites of the Pia Bioc complex Middle Triassic age and includes a number of different size tin deposits . The Ngoi Lem deposit (4700 tons of Sn and 300 tons of Cu) is the largest and most studied ones. Despite the widespread distribution of Early-Middle Triassic granitoid magmatism within the Lo Gam structure, tin mineralization was revealed only near the Tam Dao massif and practically does not appear around other massifs of the Phia Bioc complex. Zircon geochemical features from biotite granites of various massifs indicate the similarity of the oxygen fugacity and fractionation degree of the parental melts. The obtained zircon characteristics are fully consistent with realistic genetic models for tin deposits related with reduced intrusions. The partial melting temperature of the metasedimentary substrate is the reasons for the various metal fertility potential of coeval and geochemically similar granitoids. The relatively high zircon crystallization temperatures (~>780–800 °C) of tin-bearing biotite granites of the Tam Dao imply that they were produced at a higher temperature by biotite-dehydration melting, which requires additional heat from the mantle. The interaction between mafic and granitic magmas led to the enrichment of acidic melts in copper. The low oxygen fugacity led the dominance of the sulfide form of sulfur in melts, which in turn determined its low concentration. The low S/Cu ratio in the granite melt prevented crystallization and fractionation of sulfides therefore the residual melts experienced some Cu enrichment. The proposed scenario of granite melt Cu saturation and the absence of its significant sulfide fractionation explains the contradictory Sn-Cu metallogeny of the Tam Dao ore district. The new obtained features of the Early-Middle Triassic Pia Bioc granites propose key zircon geochemical indicators of tin fertility reduced granitic magma: (1) T~>780–800 °C, (2) ΔFMQ << 0 and (3) Eu/Eu* < 0.08.
Geologiâ rudnyh mestoroždenij. 2025;67(3):337-375
pages 337-375 views

Ore-localizing and ore-preserving factor of lightening of the ore-bearing alluvial sediments in the uranium deposits of the Khiagda ore field

Solodov I.N., Nesterova M.V.

Abstract

The throughout lightening up to the whitening of basement granites, ore-bearing alluvial sediments, volcanogenic-sedimentary strata and fracture zones of plateau basalts are shown on an example of Vershinnoye uranium ore deposit of Khiagda ore field of Vitimskiy uranium ore region. The contribution of deep carbonated waters with high reducing capacity to this process is shown. The ore-localizing and ore-preserving role of the ore-bearing alluvial sediments lightening process is proofed. The key similarities and differences of young (Vitim type) and ancient (Dalmatov type) paleovalley deposits in contrast to the classical bedded-infiltration deposits of the Tien Shan uranium megaprovince are shown.

Geologiâ rudnyh mestoroždenij. 2025;67(3):376-394
pages 376-394 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».