DIFFERENT TYPES OF CASIO3 IN THE EARTH’S MANTLE AND ITS GEOCHEMICAL HETEROGENEITY: THE JUINA AREA IN BRAZIL AS AN EXAMPLE
- Autores: Kaminsky F.V.1, Kostitsyn Y.A.1
-
Afiliações:
- Vernadsky Institute of Geochemistry and Analytical Chemistry
- Edição: Volume 70, Nº 4 (2025)
- Páginas: 271-284
- Seção: Articles
- URL: https://bakhtiniada.ru/0016-7525/article/view/304334
- DOI: https://doi.org/10.31857/S0016752525040011
- EDN: https://elibrary.ru/fxsfyk
- ID: 304334
Citar
Resumo
CaSiO3 inclusions in diamonds from the Juina area in Brazil have low Fe (0.08–0.53 wt. % FeO) and Al (0–1.52 wt. % Al2O3) concentrations; they belong to the ultramafic association. Two different types exist among CaSiO3 grains. Type I has a normal REEn pattern, while type II has a sinusoidal REEn pattern. Type I CaSiO3 associates with high-Mg – high-Ni protogenetic ferropericlase, and type II associates with high-Fe – low-Ni syngenetic ferropericlase. Thus, type I CaSiO3 grains are protogenetic, formed, like high-Mg – high-Ni ferropericlase, in the upper part of the lower mantle as davemaoite (CaSi-perovskite), and type II CaSiO3 were formed in the transition zone as breyite. The enrichment of CaSiO3 in REE, particularly in LREE, corresponds to high values of their partition coefficient CaSiO3/melt and shows the Ca-SiO3’s origin from a mantle material under high pressures. The isotope characteristics of the studied CaSiO3 demonstrate strong geochemical heterogeneity in the inclusions. The 87Rb/86Sr ratios in type II CaSiO3 (0.127–3.23) are 3–4 orders higher than in type I (0.0008). Even within a single diamond, different CaSiO3 grains have 87Rb/86Sr ratios varying from 0.014 to 3.23. The same is true for U/Pb isotope systematics (e. g., 238U/206Pb varies in one sample in an order of magnitude from 0.031 to 0.312) and, to some extent, for Sm/Nd ratios. This implies the geo-chemical heterogeneity in Deep Earth on a very small scale.
Palavras-chave
Sobre autores
F. Kaminsky
Vernadsky Institute of Geochemistry and Analytical Chemistry
Email: kaminsky@geokhi.ru
Rússia, Kosygin Str., 19, Moscow, 119991
Yu. Kostitsyn
Vernadsky Institute of Geochemistry and Analytical Chemistry
Autor responsável pela correspondência
Email: kaminsky@geokhi.ru
Rússia, Kosygin Str., 19, Moscow, 119991
Bibliografia
- Костицын Ю.А. (2004) Sm–Nd и Lu–Hf изотопные системы Земли: отвечают ли они хондритам? Петрология. 12(5), 451–466.
- Костицын Ю.А. (2007) Взаимосвязь между химической и изотопной (Sr, Nd, Hf, Pb) гетерогенностью мантии. Геохимия. 12, 1267–1291.
- Kostitsyn Yu.A. (2007) Relationships between chemical and isotopic (Sr, Nd, Hf, and Pb) heterogeneity of the mantle. Geochem. Int. 45(12), 1173–1196. https://doi.org/10.1134/S0016702907120014
- Лаврентьев Ю.Г., Карманов Н.С., Усова Л.В. (2015) Электронно-зондовое определение состава минералов: Микроанализатор или сканирующий электронный микроскоп. Геология и Геофизика. 56(8), 1473–1482. https://doi.org/10.15372/GiG20150806
- Akaogi M. (2007) Phase transitions of minerals in the transition zone and upper part of the lower mantle. In Ohtani E. (ed) Advances in High-Pressure Mineralogy. Geol. Soc. Amer. Spec. Paper. 421, 1–13. https://doi.org/10.1130/2007.2421(01)
- Araujo D.P., Gaspar J.C., Bulanova G.P., Smith C.B., Kohn S.C., Walter M.J., Hauri E.H. (2013) Juina diamonds from kimberlites and alluvials: a comparison of morphology, spectral characteristics, and carbon isotope composition. Proceedings of the 10th. International Kimberlite Conference, Special Issue of the Journal of the Geol. Soc. India. 1, 255–269. https://doi.org/10.1007/978-81-322-1170-9_16.
- Brenker F.E., Nestola F., Brenker L., Peruzzo L., Harris J.W. (2021) Origin, properties, and structure of breyite: The second most abundant mineral inclusion in super-deep diamonds. Am. Mineral. 106, 38–43. https://doi.org/10.2138/am‑2020-7513
- Brey G.P., Bulatov V., Girnis A., Harris J.W., Stachel T. (2004) Ferropericlase – a lower mantle phase in the upper mantle. Lithos. 77, 655–663.
- Bulanova G.P., Smith C.B., Kohn S.C., Walter M.J., Gobbo L., Kearns S. (2008) Machado River, Brazil – a newly recognized ultradeep diamond occurrence. 9th International Kimberlite Conference Extended Abstract No. 9IKC–A‑00233.
- Bulanova G.P., Walter M.J., Smith C.B., Kohn S.C., Armstrong L.S., Blundy J., Gobbo L. (2010) Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib. Mineral. Petr. 160, 489–510. https://doi.org/10.1007/s00410-010-0490-6
- Bulatov V.K., Girnis A.V., Brey G.P., Woodland A.B., Höfer H.E. (2019) Ferropericlase crystallization under upper mantle conditions. Contrib. Mineral. Petr. 174, 45. https://doi.org/10.1007/s00410-019-1582-6
- Burnham A.D., Bulanova G.P., Smith C.B., Whitehead S.C., Kohn S.C., Gobbo L., Walter M.J. (2016) Diamonds from the Machado River alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle. Lithos. 265, 199–213. https://doi.org/10.1016/j.lithos.2016.05.022
- Cabral-Neto I., Ruberti E., Pearson D.G., Luo Y., Azzone R.G., Silveira F.V., Almeida V.V. (2024) Diamond sources of the Juina region, Amazonian craton: textural and mineral chemical characteristics of Kimberley-type pyroclastic kimberlites. Mineral. Petrol. 118, 1–22. https://doi.org/10.1007/s00710-023-00849-8
- Carlson R.W., Czamanske G., Fedorenko V., Ilupin I. (2006) A comparison of Siberian meimechites and kimberlites: Implications for the source of high-Mg alkalic magmas and flood basalts. Geochem. Geophys. Geosyst. 7(11), Q11014. https://doi.org/10.1029/2006GC001342
- Coleman, R.G., Lee, D.E., Beatty, L.B., Brannock, W.W. (1965) Eclogites and eclogites – their differences and similarities. Geol. Soc. Amer. Bull. 76, 483–508.
- Cordani U.G., Teixeira W. (2007) Proterozoic accretionary belts in the Amazonian Craton. In Hatcher R.D., Jr., Carlson M.P., McBride J.H., Martínez-Catalán J.R. (eds) 4-D Framework of Continental Crust. 297–320. Geol. Soc. Amer. Mem. 200, 297–320. https://doi.org/10.1130/2007.1200(14)
- Corgne A., Wood B.J. (2005) Trace element partitioning and substitution mechanisms in calcium perovskites. Contrib. Mineral. Petrol. 149, 85–97. https://doi.org/10.1007/s00410-004-0638-3
- Corgne A., Allan N.L., Wood B.J. (2003) Atomistic simulations of trace element incorporation into the large site of MgSiO3 and CaSiO3 perovskites. Physics of Earth and Planetary Interiors. 139, 113–127.
- Corgne A., Liebske C., Wood B.J., Rubie D.C., Frost D.J. (2005) Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochimiva et Cosmochemica Acta. 69(2), 485–496. https://doi.org/10.1016j.gca.2004.06.041
- Creighton S., Stachel T., Matveev S., Hofer H., McCammon C., Luth R.W. (2009) Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contrib. Mineral. Petr. 157, 491–504. https://doi.org/10.1007/s00410-008-0348-3
- Dorfman S.M. (2016) Phase diagrams and thermodynamics of lower mantle materials. In: Terasaki H., Fischer R.A. (eds) Deep Earth; physics and chemistry of the lower mantle and core, Geophys. Monograph. 217, 241–252.
- Fraser K.J., Hawkesworth C.J. (1992) The petrogenesis of Group‑2 ultrapotassic kimberlites from Finsch Mine, South Africa. Lithos. 28(3–6), 327–345.
- Gibson S.A., Thompson R.N., Dickin A.P., Leonardos O.H. (1995) High-Ti and low-Ti mafic potassic magmas – key to plume- lithosphere lnteractions and continental flood-basalt genesis. Earth Planet. Sci. Lett. 136(3–4), 149–165.
- Godard G. (2001) Eclogites and their geodynamic interpretation: a history. J. Geodyn. 32(1–2), 165–203.
- Harte B., Harris J.W., Hutchison M.T., Watt G.R., Wilding M.C. (1999) Lower mantle mineral associations in diamonds from Sao Luiz, Brazil. In: Fei Y., Bertka C.M., Mysen B.O. (eds) Mantle Petrology: Field Observations and High Pressure Experimentation: A tribute to Francis R. (Joe) Boyd. Geochem. Soc. Spec. Publ. 6, 125–153.
- Hayman P.C., Kopylova M.G., Kaminsky F.V. (2005) Lower mantle diamonds from Rio Soriso (Juina, Brazil). Contrib. Mineral. Petr. 149, 430–445. https://doi.org/10.1007/s00410-005-0657-8
- Heaman L., Teixeira N.A., Gobbo L., Gaspar J.C. (1998) U–Pb mantle zircon ages for kimberlites from the Juina and Paranatinga Provinces, Brazil. Seventh International Kimberlite Conference Extended Abstracts. Cape Town, April 1998, 322–324.
- Huang J.-X., Gréau Y., Griffin W.L., O’Reilly S.Y., Pearson N.J. (2012) Multi-stage origin of Roberts Victor eclogites: Progressive metasomatism and its isotopic effects. Lithos. 142–143, 161–181. https://doi.org/10.106/j.lithos.2012.03.002
- Hutchison M.T., Dale C.W., Nowell G.M., Laiginhas F.A., Pearson D.G. (2012) Age constraints on ultra-deep mantle petrology shown by Juina diamonds. 10th Internat. Kimberlite Conference Extended Abstract 10IKC‑184. https://doi.org/10.29173/ikc3733
- Kaminsky F.V. (2017) The Earth’s Lower Mantle: Composition and Structure, 331 pp. Springer. https://doi.org/10.1007/978-3-319-55684-0
- Kaminsky F.V., Zakharchenko O.D., Davies R., Griffin W.L., Khachatryan-Blinova G.K., Shiryaev A.A. (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib. Mineral. Petr. 140(6), 734–753. https://doi.org/10.1007/s004100000221
- Kaminsky F.V., Sablukov S.M., Belousova E.A., Andreazza P., Tremblay M., Griffin W.L. (2010) Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. Lithos.114, 16–29. https://doi.org/10.1016/j.lithos.2009.07.012
- Kaminsky F.V., Zedgenizov D.A., Sevastyanov V.S., Kuzne-tsova O.V. (2023) Distinct groups of low- and high-Fe ferropericlase inclusions in super-deep diamonds: an example from the Juina area, Brazil. Minerals. 13(9), 1217. https://doi.org/10.3390/min13091217
- Kargin A.V., Golubeva Yu.Yu., Kononova V.A. (2011) Kimberlites of the Daldyn-Alakit region (Yakutia): Spatial distribution of the rocks with different chemical characteristics. Petrology. 19, 496–520. https://doi.org/10.1134/S086959111105002X
- Lorenzon S., Wenz M., Nimis P., Jacobsen S.D., Pasqualetto L., Pamato M.G., Novella D., Zhang D., Anzolini C., Regier M., Stachel T., Pearson G., Harris J.F., Nestola F. (2023) Dual origin of ferropericlase inclusions within super-deep diamonds. Earth Planet. Sci. Lett. 608: 118081. https://doi.org/10.1016/j.epsl.2023.118081
- McDonough W.F., Sun S.-s. (1995) The composition of the Earth. Chem. Geol. 120(3–4), 223–253.
- Milani S., Comboni D., Lotti P., Fumagalli P., Ziberna L., Maurice J., Hanfland M., Merlini M. (2021) Crystal structure evolution of CaSiO3 polymorphs at Earth’s mantle pressures. Minerals. 11, 652. https://doi.org/0.3390/min1106065
- Nestola F., Pamato M.G., Novella D. (2023) Going inside a diamond. In: Bindi L., Cruciani G. (eds) Celebrating the International Year of Mineralogy, 249–263. https://doi.org/10.1007/978-3-031-28805-0_10
- Palot M.P., Cartigny P., Harris J.W., Kaminsky F.V., Stachel T. (2012) Evidence for deep mantle convection and primordial heterogeneity from N and C stable isotopes in diamond. Earth and Planetary Science Letters. Earth Planet. Sci. Lett. 357–358, 179–193. https://doi.org/10.1016/j.epsl.2012.09.015
- Shirey S.B., Pearson I.D.G., Stachel T., Walter M.J. (2024) Sublithospheric diamonds: Plate tectonics from Earth’s deepest mantle samples. Ann. Rev. Earth Planet. Sci. 52, 9.1–9.45. https://doi.org/10.1146/annurev-earth‑032320-105438
- Smit K.V., Timmerman S., Aulbach S., Shirey S.B., Richard-son S.H., Phillips D., Pearson D.G. (2022) Geochronology of diamonds. Reviews in Mineralogy and Geochemistry. 88, 567–636.
- Stachel T., Harris J.W., Brey G.P., Joswig W. (2000) Kankan diamonds (Guinea) II: Lower mantle inclusion parageneses. Contrib. Mineral. Petr. 140(1), 16–27.
- Teixeira W., Cordani U.G. (2008) Proterozoic evolution of the Amazonian Craton Reviewed. Indian J. Geol. 80(1–4), 115–137.
- Thomson A.R., Kohn S.C., Bulanova G.P., Smith C.B., Araujo D., Walter M.J. (2016a) Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina‑5 kimberlite: Evidence for diamond growth from slab melts. Lithos. 265, 108–124. https://doi.org/10.1016/j.lithos.2016.08.035
- Thomson A.R., Walter M.J., Kohn S.C., Brooker R.A. (2016b) Slab melting as a barrier to deep carbon subduction. Nature. 529, 76–79. https://doi.org/10.1038/nature1617
- Timmerman S., Stachel T., Koornneef J.M., Smit K.V., Harlou R., Nowell G.M., Thomson A.R., Kohn S.C., Davies J.H.F.L., Davies G.R., Kreb M.Y., Zhang Q., Milne S.E.M., Harris J.W., Kaminsky F.V., Zedgenizov D., Bulanova G., Smith C.B., Neto I.C., Silveira F.V., Burnham A.D., Nestola F., Shirey S.B., Walter M.J., Steele A., Pearson D.G. (2023) Sublithospheric diamonds and supercontinent cycle. Nature. 623, 752–756. https://doi.org/10.1038/s41586-023-06662-9
- Tschauner O., Huang S., Yang S., Humayun M., Liu W., Corder S.N.G, Bechte H.A., Tischler J., Rossman G.R. (2021) Discovery of davemaoite, CaSiO3-perovskite, as a mineral from the lower mantle. Science. 374(6569), 891–894. https://doi.org/10.1126/science.abl8568
- Tschauner O., Huang S., Humayun M., Liu W., Rossman G.R. (2022) Response to comment on “Discovery of davemaoite, CaSiO3-perovskite, as a mineral from the lower mantle”. Science. 376(6593). https://doi.org/10.1126/science.abo2029
- Tsuchiya T., Kawai K. (2013) Ab initio mineralogical model of the Earth’s lower mantle. In: Karato S-I, (ed) Phys. Chem. Deep Earth. 213–243. John Wiley & Sons, Somerset, NJ, USA.
- Walter M.J., Thomson A.R., Smith E.M. (2022) Geochemistry of silicate and oxide inclusions in sublithospheric diamonds. Rev. Miner. Geochem. 88. 393–450. https://doi.org/10.2138/rmg.2022.88.07
- Zedgenizov D.A., Kagi H., Shatsky V.S., Ragozin A.L. (2014) Local variations of carbon isotope compositionin diamonds from Sao-Luis (Brazil): Evidence for heterogenous carbon reservoir in sublithospheric mantle. Chem. Geol. 240(1–2), 114–124. https://doi.org/10.1016/j.chemgeo.2013.10.033
- Zhang O., Timmerman S., Stachel T., Chinn I., Stern R.A., Davies J., Nestola F., Luth R.L., Pearson D.G. (2024) Sublithospheric diamonds extend Paleoproterozoic record of cold deep subduction into the lower mantle. Earth Planet. Sci. Lett. 634, 118675. https://doi.org/10.1016/j.epsl.2024.118675
Arquivos suplementares
