Changes in Genomes and Karyotypes during Speciation and Progressive Evolution of Plants
- 作者: Rodionov A.V.1
-
隶属关系:
- Komarov Botanical Institute of the Russian Academy of Sciences
- 期: 卷 61, 编号 11 (2025)
- 页面: 166-183
- 栏目: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://bakhtiniada.ru/0016-6758/article/view/361196
- DOI: https://doi.org/10.7868/S303451032510182
- ID: 361196
如何引用文章
详细
作者简介
A. Rodionov
Komarov Botanical Institute of the Russian Academy of Sciences
Email: avrodionov@mail.ru
Saint Petersburg, Russia
参考
- Burki F., Roger A.J., Brown M.W., Simpson A.G. The new tree of eukaryotes // Trends Ecol. Evol. 2020. V. 35. P. 43–55. https://doi.org/10.1016/j.tree.2019.08.008
- Koonin E.V. The origin and early evolution of eukaryotes in the light of phylogenomics // Genome Biol. 2010. V. 11. P. 1–12. https://doi.org/10.1186/gb-2010-11-5-209
- Раутиан М.С., Шнеер В.С., Родионов А.В. Полифилия носителей хлоропластов: где располагаются растения на древе жизни? // Turczaninowia. 2019. Т. 22. № 2. С. 121–132. https://doi.org/10.14258/turczaninowia.22.2.7
- Cerón-Romero M.A., Fonseca M.M., De Oliveira Martins L. et al. Phylogenomic analyses of 2,786 genes in 158 lineages support a root of the eukaryotic tree of life between Opisthokonts and all other lineages // Genome Biol. Evol. 2022. V. 14. https://doi.org/10.1093/gbe/evac119
- Dobzhansky T. Genetics of the Еvolutionary Process. N.Y., London: Columbia Univ. Press, 1970. 505 p.
- Grant V. Plant Speciation. N.Y., London: Columbia Univ. Press, 1971. 435 p.
- Folk R.A., Soltis P.S., Soltis D.E., Guralnick R. New prospects in the detection and comparative analysis of hybridization in the tree of life // Am. J. Bot. 2018. V. 105. P. 364–375. https://doi.org/10.1002/ajb2.1018
- Stull G.W., Pham K.K., Soltis P.S., Soltis D.E. Deep reticulation: Тhe long legacy of hybridization in vascular plant evolution // Plant J. 2023. V. 114. P. 743–766. https://doi.org/10.1111/tpj.16142
- Whitney K.D., Ahern J.R., Campbell L.G. et al. Patterns of hybridization in plants // Perspect. Plant Ecol. Evol. Syst. 2010. V. 12. P. 175–182. https://doi.org/10.1016/j.ppees.2010.02.002
- Шнеер В.С., Пунина Е.О., Домашкина В.В., Родионов А.В. Криптогибриды у растений – подводная часть айсберга // Ботан. журнал. 2023. Т. 108. № 12. С. 1037–1053. https://doi.org/10.31857/S0006813623120098
- Van de Peer Y., Mizrachi E., Marchal K. The evolutionary significance of polyploidy // Nat. Rev. Genet. 2017. V. 18. P. 411–424. https://doi.org/10.1038/nrg.2017.26
- Eaton D.A., Hipp A.L., González-Rodríguez A., Cavender-Bares J. Historical introgression among the American live oaks and the comparative nature of tests for introgression // Evolution. 2015. V. 69. P. 2587–2601. https://doi.org/10.1111/evo.12758
- Leroy T., Louvet J.M., Lalanne C. et al. Adaptive introgression as a driver of local adaptation to climate in European white oaks // New Phytol. 2020. V. 226. P. 1171–1182. https://doi.org/10.1111/nph.16095
- Орлова Л.В., Егоров А.А. К систематике и географическому распространению ели финской (Picea fennica (Regel) Kom., Pinaceae) // Новости сист. высш. растений. 2010. Вып. 42. С. 5–23.
- Agafonov A.V., Shabanova E.V., Emtseva M.V. et al. Phylogenetic and taxonomic relationships between morphotypes related to Elymus caninus (Poaceae) based on sequence of a nuclear gene GBSS1 (waxy) and sexual hybridization // J. Syst. Evol. 2024. V. 62. P. 520–533. https://doi.org/10.1111/jse.13006
- Родионов А.В. Межвидовая гибридизация и полиплоидия в эволюции растений // Вавил. журн. генетики и селекции. 2013. Т. 17. № 4 (2). С. 916–929.
- Anderson E. Introgressive hybridization. N.Y., London: Hafner Publ. Comp., 1968. 109 p.
- Rieseberg L.H., Willis J.H. Plant speciation // Science. 2007. V. 317. P. 910–914. https://doi.org/10.1126/science.1137729
- Soltis P.S., Soltis D.E. The role of hybridization in plant speciation // Annu. Rev. Plant Biol. 2009. V. 60. P. 561–588. https://doi.org/10.1146/annurev.arplant.043008.092039
- Родионов А.В. Эуполиплоидия как способ видообразования у растений // Генетика. 2023. Т. 59. № 5. С. 493–506. https://doi.org/0.31857/S0016675823050119
- Wood T.E., Takebayashi N., Barker M.S. et al. The frequency of polyploid speciation in vascular plants // PNAS USA. 2009. V. 106. P. 13875–13879. https://doi.org/10.1073/pnas.0811575106
- Mandakova T., Lysak M.A. Post-polyploid diploidization and diversification through dysploid changes // Curr. Opin. Plant Biol. 2018. V. 42. P. 55–65. https://doi.org/10.1016/j.pbi.2018.03.001
- Li Z., McKibben M.T., Finch G.S. et al. Patterns and processes of diploidization in land plants // Annu. Rev. Plant Biol. 2021. V. 72. P. 387–410. https://doi.org/10.1146/annurev-arplant-050718-100344
- Scarrow M., Wang Y., Sun G. Molecular regulatory mechanisms underlying the adaptability of polyploid plants // Biol. Rev. 2021. V. 96. P. 394–407. https://doi.org/10.1111/brv.12661
- He X., Qi Z., Liu Z. et al. Pangenome analysis reveals transposon-driven genome evolution in cotton // BMC Biol. 2024. V. 22. P. 92. https://doi.org/10.1186/s12915-024-01893-2
- Decena M.Á., Sancho R., Inda L.A. et al. Expansions and contractions of repetitive DNA elements reveal contrasting evolutionary responses to the polyploid genome shock hypothesis in Brachypodium model grasses // Front. Plant Sci. 2024. V. 15. https://doi.org/10.3389/fpls.2024.1419255
- Teng J., Wang J., Zhang L. et al. Paleopolyploidies and genomic fractionation in major eudicot clades // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.883140
- Bomblies K. Learning to tango with four (or more): The molecular basis of adaptation to polyploid meiosis // Plant Reprod. 2023. V. 36. P. 107–124. https://doi.org/10.1007/s00497-022-00448-1
- Родионов А.В., Шнеер В.С., Гнутиков А.А. и др. Диалектика видов: от исходного единообразия, через максимально возможное разнообразие к конечному единообразию // Ботан. журнал. 2020. Т. 105. № 9. С. 835–853 https://doi.org/10.31857/S0006813620070091
- Favarger C. Sur l’emploi des nombres chromosomiques en geographie botanique historique // Ber. Geobot. Inst. Rubel. 1961. V. 32. P. 119–146.
- Mandakova T., Joly S., Krzywinski M. et al. Fast diploidization in close mesopolyploid relatives of Arabidopsis // Plant Cell. 2010. V. 22. P. 2277–2290. https://doi.org/10.1105/tpc.110.074526
- Родионов А.В., Носов Н.Н., Ким Е.С. и др. Происхождение полиплоидных геномов мятликов (Poa L.) и феномен потока генов между Северной Пацификой и субантарктическими островами // Генетика. 2010. Т. 46. № 12. С. 1598–1608.
- Пробатова Н.С. Хромосомные числа в семействе Poaceae и их значение для систематики, филогении и фитогеографии (на примере злаков Дальнего Востока России) // Комаровские чтения. Вып. 55. Владивосток, 2007. С. 9–103.
- Guerra M. Chromosome numbers in plant cytotaxonomy: Сoncepts and implications // Cytogenet. Genome Res. 2008. V. 120. P. 339–350. https://doi.org/10.1159/000121083
- Pecrix Y., Rallo G., Folzer H. et al. Polyploidization mechanisms: Тemperature environment can induce diploid gamete formation in Rosa sp. // J. Exp. Bot. 2011. V. 62. P. 3587–3597. https://doi.org/10.1093/jxb/err052
- Prentis P.J., Wilson J.R., Dormontt E.E. et al. Adaptive evolution in invasive species // Trends Plant Sci. 2008. V. 13. P. 288–294. https://doi.org/10.1016/j.tplants.2008.03.004
- Meudt H.M., Albach D.C., Tanentzap A.J. et al. Polyploidy on islands: Its emergence and importance for diversification // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.637214
- Rice A., Šmarda P., Novosolov M. et al. The global biogeography of polyploid plants // Nature Ecol. Evol. 2019. V. 3. P. 265–273. https://doi.org/10.1038/s41559-018-0787-9
- Carman J.G. Asynchronous expression of duplicate genes in angiosperm may cause apomixis, bispory, tetraspory, and polyembryony // Biol. J. Linn. Soc. 1997. V. 61. P. 51–94. https://doi.org/10.1111/j.1095-8312.1997.tb01778.x
- Winterfeld G., Schneider J., Perner K., Roser M. Polyploidy and hybridization as main factors of speciation: Complex reticulate evolution within the grass genus Helictochloa // Cytogen. Genome Res. 2014. V. 142. P. 204–225. https://doi.org/10.1159/000361002
- Suissa J.S., Kinosian S.P., Schafran P.W. et al. Homoploid hybrids, allopolyploids, and high ploidy levels characterize the evolutionary history of a western North American quillwort (Isoetes) complex // Mol. Phylogenet. Evol. 2022. V. 166. https://doi.org/10.1016/j.ympev.2021.107332
- Шнеер В.С., Пунина Е.О., Родионов А.В. Внутривидовые различия в плоидности у покрытосеменных и их таксономическая интерпретация // Ботан. журнал. 2018. Т. 103. № 5. С. 555–585. https://doi.org/10.1134/S0006813618050010
- Sutherland B.L., Galloway L.F. Postzygotic isolation varies by ploidy level within a polyploid complex // New Phytol. 2017. V. 213. P. 404–412. https://doi.org/10.1111/nph.14116
- Цвелев Н.Н. Вид как один из таксонов // Бюлл. МОИП. Отд. биол. 1995. Т. 100. Вып. 5. С. 62–68.
- Камелин Р.В. Особенности видообразования у цветковых растений // Тр. Зоол. ин-та РАН. 2009. Т. 313. Прил. 1. С. 141–149.
- Гребельный С.Д. Много ли на свете клональных видов. Ч. 2. Клонирование в природе, его роль в формировании разнообразия фауны и флоры // Зоол. беспозвоночных. 2006. Т. 3. № 1. С. 77–109.
- Hojsgaard D., Pellino M., Sharbel T.F., Hörandl E. Resolving genome evolution patterns in asexual plants // Next Generation Sequencing in Plant Systematics / Eds Hörandl E., Appelhans M.S. Königstein: Koeltz Sci. Books, 2015. P. 119–153. https://doi.org/10.14630/ 000005
- Soltis P.S., Soltis D.E. Ancient WGD events as drivers of key innovations in angiosperms // Curr. Opin. Plant Biol. 2016. V. 30. P. 159–165. https://doi.org/10.1016/j.pbi.2016.03.015
- Landis J.B., Soltis D.E., Li Z. et al. Impact of whole – genome duplication events on diversification rates in angiosperms // Amer. J. Bot. 2018. V. 105. P. 348–363. https://doi.org/10.1002/ajb2.1060
- Schranz M.E., Mohammadin S., Edger P.P. Ancient whole genome duplications, novelty and diversification: the WGD radiation lag-time model // Curr. Opin. Plant Biol. 2012. V. 15. P. 147–153. https://doi.org/10.1016/j.pbi.2012.03.011
- Ma P.F., Liu Y.L., Jin G.H. et al. The Pharus latifolius genome bridges the gap of early grass evolution // Plant Cell. 2021. V. 33. P. 846–864. https://doi.org/10.1093/plcell/koab015
- Huang J., Xu W., Zhai J. et al. Nuclear phylogeny and insights into whole-genome duplications and reproductive development of Solanaceae plants // Plant Commun. 2023. V. 4. https://doi.org/10.1016/j.xplc.2023.100595
- Mayrose I., Zhan S.H., Rothfels C.J. et al. Recently formed polyploid plants diversify at lower rates // Science. 2011. V. 333. P. 1257–1267. https://doi.org/10.1126/science.1207205
- Clark J.W. Genome evolution in plants and the origins of innovation // New Phytol. 2023. V. 240. P. 2204–2209. https://doi.org/10.1111/nph.19242
- Patel N., Budke J.M., Bainard J. Distinct patterns of genome size evolution in each bryophyte lineage are not correlated with whole genome duplication // Ann. Bot. 2025. https://doi.org/10.1093/aob/mcaf012
- Skaptsov M.V., Vaganov A.V., Kechaykin A.A. et al. The cytotypes variability of the complex Selaginella sanguinolenta s. L. // Turczaninowia. 2020. V. 23. № 2. P. 5–14. https://doi.org/10.14258/turczaninowia.23.2.1
- Liang Z., Schnable J.C. Functional divergence between subgenomes and gene pairs after whole genome duplications // Mol. Plant. 2018. V. 11. P. 388–397. https://doi.org/10.1016/j.molp.2017.12.010
- Carta A., Bedini G., Peruzzi L. A deep dive into the ancestral chromosome number and genome size of flowering plants // New Phytol. 2020. V. 228. P. 1097–1106. https://doi.org/10.1111/nph.16668
- Li Z., Kinosian S.P., Zhan S., Barker M.S. Ancient polyploidy and low rate of chromosome loss explain the high chromosome numbers of homosporous ferns // bioRxiv. 2024. https://doi.org/10.1101/2024.09.23.614530
- Klekowski E.J. Jr., Baker H.G. Evolutionary significance of polyploidy in the Pteridophyta // Science. 1966. V. 153. P. 305–307. https://doi.org/10.1126/science.153.3733.305
- Zhong Y., Liu Y., Wu W. et al. Genomic insights into genetic diploidization in the homosporous fern Adiantum nelumboides // Gen. Biol. Evol. 2022. V. 14. https://doi.org/10.1093/gbe/evac127
- Levin D.A., Wilson A.C. Rates of evolution in seed plants: Net increase in diversity of chromosome numbers and species numbers through time // PNAS USA. 1976. V. 73. https://doi.org/10.1073/pnas.73.6.2086
- Laurie D.A., Bennett M.D. The timing of chromosome elimination in hexaploid wheat × maize crosses // Genome. 1989. V. 32. P. 953–961. https://doi.org/10.1139/g89-537
- Evtushenko E.V., Lipikhina Y.A., Stepochkin P.I., Vershinin A.V. Cytogenetic and molecular characteristics of rye genome in octoploid Triticale (× Triticosecale Wittmack) // Comp. Cytogen. 2019. V. 13. № 4. P. 423–434. https://doi.org/10.3897/ CompCytogen.v13i4.39576
- Rutledge S.D., Cimini D. Consequences of aneuploidy in sickness and in health // Curr. Opin. Cell. Biol. 2016. V. 40. P. 41–46. https://doi.org/10.1016/j.ceb.2016.02.003
- Gaeta R.T., Pires J.C., Iniguez-Luy F. et al. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype // Plant Cell. 2007. V. 19. P. 3403–3417. https://doi.org/10.1105/tpc.107.054346
- Lim K.Y., Soltis D.E., Soltis P.S. et al. Rapid chromosome evolution in recently formed polyploids in Tragopogon (Asteraceae) // PloS One. 2008. V. 3. https://doi.org/10.1371/journal.pone.0003353
- Zhang A., Li N., Gong L. et al. Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat // Plant Physiol. 2017. V. 175. P. 828–847. https://doi.org/10.1104/pp.17.00819
- Panchy N., Lehti-Shiu M., Shiu S.H. Evolution of gene duplication in plants // Plant Physiol. 2016. V. 171. № 4. P. 2294–2316. https://doi.org/10.1104/pp.16.00523
- D’Hont A., Denoeud F., Aury J.M. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants // Nature. 2012. V. 488. P. 213–217. https://doi.org/10.1038/nature11241
- International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding using a fully annotated reference genome // Science. 2018. V. 361. https://doi.org/10.1126/science.aar7191
- Chalhoub B., Denoeud F., Liu S. et al. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome // Science. 2014. V. 345. P. 950–953. https://doi.org/10.1126/science.1253435
- Yoo M.J., Szadkowski E., Wendel J.F. Homoeolog expression bias and expression level dominance in allopolyploid cotton // Heredity. 2013. V. 110. P. 171–180. https://doi.org/10.1038/hdy.2012.94
- Родионов А.В., Амосова А.В., Крайнова Л.М. и др. Феномен высокой частоты мутаций в генах 35S рРНК С-субгенома у полиплоидных видов Avena L. // Генетика. 2020. Т. 56. № 6. С. 657–666. https://doi.org/10.31857/S0016675820060090
- Wang X., Morton J.A., Pellicer J. et al. Genome downsizing after polyploidy: Mechanisms, rates and selection pressures // Plant J. 2021. V. 107. P. 1003–1015. https://doi.org/10.1111/tpj.15363
- Xiong Z., Gaeta R.T., Pires J.C. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus // PNAS USA. 2011. V. 108. P. 7908–7913. https://doi.org/10.1073/pnas.1014138108
- Buggs R.J., Chamala S., Wu W. et al. Rapid, repeated, and clustered loss of duplicate genes in allopolyploid plant populations of independent origin // Curr. Biol. 2012. V. 22. P. 248–252. https://doi.org/10.1016/j.cub.2011.12.027
- Bayer P.E., Scheben A., Golicz A.A. et al. Modelling of gene loss propensity in the pangenomes of three Brassica species suggests different mechanisms between polyploids and diploids // Plant Biotechnol. J. 2021. V. 19. P. 2488–2500. https://doi.org/10.1111/pbi.13674
- Lien S., Koop B.F., Sandve S.R. et al. The Atlantic salmon genome provides insights into rediploidization // Nature. 2016. V. 533. P. 200–205. https://doi.org/10.1038/nature17164
- Li Y.H., Zhou G., Ma J. et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits // Nat. Biotechnol. 2014. V. 32. P. 1045–1052. https://doi.org/10.1038/nbt.2979
- Golicz A.A., Bayer P.E., Barker G.C. et al. The pangenome of an agronomically important crop plant Brassica oleracea // Nat. Commun. 2016. V. 7. https://doi.org/0.1038/ncomms13390
- Gordon S.P., Contreras-Moreira B., Woods D.P. et al. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure // Nat. Commun. 2017. V. 8. P. 2184. https://doi.org/10.1038/s41467-017-02292-8
- Montenegro J.D., Golicz A.A., Bayer P.E. et al. The pangenome of hexaploid bread wheat // Plant J. 2017. V. 90. P. 1007–1013. https://doi.org/10.1111/tpj.13515
- Seetharam A.S., Yu Y., Belanger S. et al. The Streptochaeta genome and the evolution of the grasses // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.710383
- Ma P.F., Liu Y.L., Jin G.H. et al. The Pharus latifolius genome bridges the gap of early grass evolution // Plant Cell. 2021. V. 33. P. 846–864. https://doi.org/10.1093/plcell/koab015
- Harris B.J., Harrison C.J., Hetherington A.M., Williams T.A. Phylogenomic evidence for the monophyly of bryophytes and the reductive evolution of stomata // Curr. Biol. 2020. V. 30. P. 2001–2012. https://doi.org/10.1016/j.cub.2020.03.048
- Renzaglia K.S., Browning W.B., Merced A. With over 60 independent losses, stomata are expendable in mosses // Front. Plant Sci. 2020. V. 11. https://doi.org/10.3389/fpls.2020.00567
- Ma X., Vanneste S., Chang J. et al. Seagrass genomes reveal a hexaploid ancestry facilitating adaptation to the marine environment // BioRxiv. 2023. https://doi.org/10.1101/2023.03.05.531170.
- Michael T.P., Ernst E., Hartwick N. et al. Genome and time-of-day transcriptome of Wolffia australiana link morphological minimization with gene loss and less growth control // Genome Res. 2021. V. 31. P. 225–238. https://doi.org/10.1101/gr.266429.120
- Domazet-Lošo M., Široki T., Šimičević K., Domazet-Lošo T. Macroevolutionary dynamics of gene family gain and loss along multicellular eukaryotic lineages // Nat. Commun. 2024. V. 15. P. 2663. https://doi.org/10.1038/s41467-024-47017-w
- Goldschmidt R. Some aspects of evolution // Science. 1933. V. 78. P. 539–547. https://doi.org/10.1126/science.78.2033.539
- Van Steenis C.G.G.J. Plant speciation in Malesia, with special reference to the theory of non-adaptive saltatory evolution // Biol. J. Linn. Soc. 1969. V. 1. P. 97–133. https://doi.org/10.1111/j.1095-8312.1969.tb01815.x
- Тахтаджян А.Л. Макроэволюционные процессы в истории растительного мира // Ботан. журнал. 1983. Т. 68. № 12. С. 1593–1603.
- Кольцов Н.К. Организация клетки. М., Л.: Гос. изд-во биол. и мед. лит-ры, 1936. C. 520.
- Van Steenis C.G.G.J. Autonomous evolution in plants. Differences in plant and animal evolution // Gard. Bull. Singapore. 1977. V. 29. P. 103–126.
- Guo H., Jiao Y., Tan X. et al. Gene duplication and genetic innovation in cereal genomes // Genome Res. 2019. V. 29. P. 261–269. https://doi.org/10.1101/gr.237511.118
- Freeling M. Bias in plant gene content following different sorts of duplication: Тandem, whole-genome, segmental, or by transposition // Annu. Rev. Plant Biol. 2009. V. 60. P. 433–453. https://doi.org/10.1146/annurev.arplant.043008.092122
- Kuzmin E., Taylor J.S., Boone C. Retention of duplicated genes in evolution // Trends Genet. 2021. V. 38. P. 59–72. https://doi.org/10.1016/j.tig.2021.06.016
- Lallemand T., Leduc M., Landes C. et al. An overview of duplicated gene detection methods: Why the duplication mechanism has to be accounted for in their choice // Genes. 2020. V. 11. https://doi.org/10.3390/genes11091046
- Vollger M.R., Guitart X., Dishuck P.C. et al. Segmental duplications and their variation in a complete human genome // Science. 2022. V. 376. https://doi.org/10.1126/science.abj6965
- Busche M., Pucker B., Viehover P. et al. Genome sequencing of Musa acuminata Dwarf Cavendish reveals a duplication of a large segment of chromosome 2 // G3 (Bethesda). 2020. V. 10. P. 37–42. https://doi.org/10.1534/g3.119.400847
- Shimizu N. Gene amplification and the extrachromosomal circular DNA // Genes. 2021. V. 12. https://doi.org/10.3390/genes12101533
- Koo D.H., Molin W.T., Saski C.A. et al. Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed Amaranthus palmeri // PNAS USA. 2018. V. 115. P. 3332–3337. https://doi.org/10.1073/pnas.1719354115
- Ain Q., Schmeer C., Wengerodt D. et al. Extrachromosomal circular DNA: Сurrent knowledge and implications for CNS aging and neurodegeneration // Int. J. Mol. Sci. 2020. V. 21. https://doi.org/10.3390/ijms21072477
- Kono T.J., Brohammer A.B., McGaugh S.E., Hirsch C.N. Tandem duplicate genes in maize are abundant and date to two distinct periods of time // G3 (Bethesda). 2018. V. 8. P. 3049–3058. https://doi.org/10.1534/g3.118.200580
- Blanc G., Wolfe K.H. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution // Plant Cell. 2004. V. 16. P. 1679–1691. https://doi.org/10.1105/tpc.021410
- Yu J., Wang J., Lin W. et al. The genomes ofOryza sativa: A history of duplications // PLoS Biol. 2005. V. 3. https://doi.org/10.1371/journal.pbio.0030038
- Zhang L., Zhu X., Zhao Y. et al. Phylotranscriptomics resolves the phylo geny of Pooideae and uncovers factors for their adaptive evolution // Mol. Biol. Evol. 2022. V. 39. https://doi.org/10.1093/molbev/msac026
- Bent A.F., Mackey D. Elicitors, effectors, and R genes: The new paradigm and a lifetime supply of questions // Annu. Rev. Phytopathol. 2007. V. 45. P. 399–436. https://doi.org/10.1146/annurev.phyto.45.062806.094427
- Shao Z.Q., Xue J.Y., Wang Q. et al. Revisiting the origin of plant NBS-LRR genes // Trends Plant Sci. 2019. V. 24. P. 9–12. https://doi.org/10.1016/j.tplants.2018.10.015
- Wei H., Liu J., Guo Q. et al. Genomic organization and comparative phylogenic analysis of NBS-LRR resistance gene family in Solanum pimpinellifolium and Arabidopsis thaliana // Evol. Bioinformatics. 2020. V. 16. https://doi.org/10.1177/117693432091105
- Meyers B.C., Kozik A., Griego A. et al. Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis // Plant Cell. 2003. V. 15. P. 809–834. https://doi.org/10.1105/tpc.009308
- Yang S., Gu T., Pan C. et al. Genetic variation of NBS-LRR class resistance genes in rice lines // Theor. Appl. Genet. 2008. V. 116. P. 165–177. https://doi.org/10.1007/s00122-007-0656-4
- Goffova I., Fajkus J. The rDNA loci – intersections of replication, transcription, and repair pathways // Int. J. Mol. Sci. 2021. V. 22. https://doi.org/10.3390/ijms22031302
- Takahashi H. Sulfate transport systems in plants: Functional diversity and molecular mechanisms underlying regulatory coordination // J. Exp. Bot. 2019. V. 70. P. 4075–4087. https://doi.org/10.1093/jxb/erz132
- Eirin-Lopez J.M., Rebordinos L., Rooney A.P., Rozas J. The birth-and-death evolution of multigene families revisited // Genome Dyn. 2012. P. 170–196. https://doi.org/10.1159/000337119
- Yuan D., He X., Han X. et al. Comprehensive review and evaluation of computational methods for identifying FLT3-internal tandem duplication in acute myeloid leukaemia // Brief. Bioinform. 2021. V. 22. https://doi.org/10.1093/bib/bbab099
- Khan I.U., Rono J.K., Zhang B.Q. et al. Identification of novel rice (Oryza sativa) HPP and HIPP genes tolerant to heavy metal toxicity // Ecotoxicol. Environ. Saf. 2019. V. 175. P. 8–18. https://doi.org/10.1016/j.ecoenv.2019.03.040
- Force A., Lynch M., Pickett F.B. et al. Preservation of duplicate genes by complementary, degenerative mutations // Genetics. 1999. V. 151. P. 1531–1545. https://doi.org/10.1093/genetics/151.4.1531
- Rodgers-Melnick E., Mane S.P., Dharmawardhana P. et al. Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus // Genome Res. 2012. V. 22. P. 95–105. https://doi.org/10.1101/gr.125146.111
- Wu F., Shi X., Lin X. et al. The ABC s of flower development: Mutational analysis of AP 1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses // Plant J. 2017. V. 89. P. 310–324. https://doi.org/10.1111/tpj.13386
- Li W., Chen Y., Ye M. et al. Evolutionary history of the C-repeat binding factor/dehydration-responsive element-binding 1 (CBF/DREB1) protein family in 43 plant species and characterization of CBF/DREB1 proteins in Solanum tuberosum // BMC Evol. Biol. 2020. V. 20. P. 142. https://doi.org/10.1186/s12862-020-01710-8
- Guo J., Ren Y., Tang Z. et al. Characterization and expression profiling of the ICE-CBF-COR genes in wheat // PeerJ. 2019. V. 7. https://doi.org/10.7717/peerj.8190
- Ibarra-Laclette E., Lyons E., Hernandez-Guzman G. et al. Architecture and evolution of a minute plant genome // Nature. 2013. V. 498. P. 94–98. https://doi.org/10.1038/nature12132
- Lan T., Renner T., Ibarra-Laclette E. et al. Longread sequencing uncovers the adaptive topography of a carnivorous plant genome // PNAS USA. 2017. V. 114. P. E4435–E4441. https://doi.org/10.1073/pnas.1702072114
- Adamec L., Matušikova I., Pavlovič A. Recent ecophysiological, biochemical and evolutional insights into plant carnivory // Ann. Bot. 2021. V. 128. P. 241–259. https://doi.org/10.1093/aob/mcab071
- Palfalvi G., Hackl T., Terhoeven N. et al. Genomes of the Venus flytrap and close relatives unveil the roots of plant carnivory // Curr. Biol. 2020. V. 30. P. 2312–2320. https://doi.org/10.1016/j.cub.2020.04.051
- Gruzdev E.V., Kadnikov V.V., Beletsky A.V. et al. Plastid genomes of carnivorous plants Drosera rotundifolia and Nepenthes × ventrata reveal evolutionary patterns resembling those observed in parasitic plants // Int. J. Mol. Sci. 2019. V. 20. https://doi.org/10.3390/ijms20174107
- Arendsee Z.W., Li L., Wurtele E.S. Coming of age: orphan genes in plants // Trends Plant Sci. 2014. V. 19. P. 698–708. https://doi.org/10.1016/j.tplants.2014.07.003
- Yao C., Yan H., Zhang X., Wang R. A database for orphan genes in Poaceae // Exp. Ther. Med. 2017. V. 14. P. 2917–2924. https://doi.org/10.3892/etm.2017.4918
- Stein J.C., Yu Y., Copetti D. et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza // Nat. Genet. 2018. V. 50. P. 285–296. https://doi.org/10.1038/s41588-018-0040-0
- Guo T., Yang J., Li D. et al. Integrating GWAS, QTL, mapping and RNA-seq to identify candidate genes for seed vigor in rice (Oryza sativa L.) // Mol. Breeding. 2019. V. 39. P. 1–16. https://doi.org/10.1007/s11032-019-0993-4
- Wang W., Zheng H., Fan C. et al. High rate of chimeric gene origination by retroposition in plant genomes // Plant Cell. 2006. V. 18. P. 1791–1802. https://doi.org/10.1105/tpc.106.041905
- Zhou Y., Zhang C., Zhang L. et al. Gene fusion as an important mechanism to generate new genes in the genus Oryza // Genome Biol. 2022. V. 23. P. 130. https://doi.org/10.1186/s13059-022-02696-w
- Jiang N., Feschotte C., Zhang X., Wessler S.R. Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs) // Curr. Opin. Plant Biol. 2004. V. 7. P. 115–119. https://doi.org/10.1016/j.pbi.2004.01.004
- Li G., Zhang T., Yu Z. et al. An efficient oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae // Plant J. 2021. V. 105. P. 978–993. https://doi.org/10.1111/tpj.15081
- Huang Y., Chen J., Dong C. Species-specific partial gene duplication in Arabidopsis thaliana evolved novel phenotypic effects on morphological traits under strong positive selection // Plant Cell. 2022. V. 34. P. 802–817. https://doi.org/10.1093/plcell/koab291
- Chen X., Rechavi O. Plant and animal small RNA communications between cells and organisms // Nat. Rev. Mol. Cell. Biol. 2022. V. 23. P. 185–203. https://doi.org/10.1038/s41580-021-00425-y
- Zhao Z., Zang S., Zou W. et al. Long non-coding RNAs: New players in plants // Int. J. Mol. Sci. 2022. V. 23. https://doi.org/0.3390/ijms23169301
- Barber W.T., Zhang W., Win H. et al. Repeat associated small RNAs vary among parents and following hybridization in maize // PNAS USA. 2012. V. 109. P. 10444–10449. https://doi.org/10.1073/pnas.1202073109
- Wu L., Liu S., Qi H. et al. Research progress on plant long non-coding RNA // Plants. 2020. V. 9. https://doi.org/10.3390/plants9040408
补充文件

