Search for Selection Fingerprints in the Genome of Black-and-white Cattle Breeds Based on the Analysis of Whole-genome Sequences of Modern and Museum Samples
- 作者: Zinovieva N.A.1, Abdelmanova A.S.1, Fornara M.S.1, Shakhin A.V.1, Chinarov R.Y.1, Nikolaev A.A.1, Boronetskaya O.I.2, Trukhachev V.I.2
-
隶属关系:
- Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst
- Timiryazev Russian State Agrarian University – Moscow Agrarian Academy
- 期: 卷 61, 编号 11 (2025)
- 页面: 152–165
- 栏目: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://bakhtiniada.ru/0016-6758/article/view/361195
- DOI: https://doi.org/10.7868/S303451032510171
- ID: 361195
如何引用文章
详细
作者简介
N. Zinovieva
Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst
Email: n_zinovieva@mail.ru
Moscow oblast, Dubrovitsy, Russia
A. Abdelmanova
Federal Research Center for Animal Husbandry named after Academy Member L.K. ErnstMoscow oblast, Dubrovitsy, Russia
M. Fornara
Federal Research Center for Animal Husbandry named after Academy Member L.K. ErnstMoscow oblast, Dubrovitsy, Russia
A. Shakhin
Federal Research Center for Animal Husbandry named after Academy Member L.K. ErnstMoscow oblast, Dubrovitsy, Russia
R. Chinarov
Federal Research Center for Animal Husbandry named after Academy Member L.K. ErnstMoscow oblast, Dubrovitsy, Russia
A. Nikolaev
Federal Research Center for Animal Husbandry named after Academy Member L.K. ErnstMoscow oblast, Dubrovitsy, Russia
O. Boronetskaya
Timiryazev Russian State Agrarian University – Moscow Agrarian AcademyMoscow, Russia
V. Trukhachev
Timiryazev Russian State Agrarian University – Moscow Agrarian AcademyMoscow, Russia
参考
- Nakahama N. Museum specimens: An overlooked and valuable material for conservation genetics // Ecol. Res. 2021. № 36. P. 13–23. https://doi.org/10.1111/1440-1703.12181
- Nakahama N., Isagi Y. Recent transitions in genetic diversity and structure in the endangered semi-natural grassland butterfly, Melitaea protonella, in Japan // Insect Conserv. and Diversity. 2018. № 11. P. 330–340. https://doi.org/10.1111/icad.12280
- Marsoner T., Vigl L.V., Manck F. et al. Indigenous livestock breeds as indicators for cultural ecosystem services: A spatial analysis within the Alpine Space // Ecol. Indicators. 2018. № 94 (2). P. 55–63. https://doi.org/10.1016/j.ecolind.2017.06.046
- Zinovieva N.A., Sheiko I.P., Dotsev A.V. et al. Genome-wide SNP analysis clearly distinguished the Belarusian Red cattle from other European cattle breeds // Animal Genet. 2021. № 52 (5). P. 720–724. https://doi.org/10.1111/age.13102
- Zinovieva N.A., Sermyagin A.A., Dotsev A.V. et al. Animal genetic resources: Developing the research of allele pool of Russian cattle breeds – minireview // Sel’skokhozyaistvennaya Biologiya [Agricultural Biology]. 2019. № 54 (4). P. 631–641. https://doi.org/10.15389/agrobiology.2019.4.631eng
- Багиров В.А., Зиновьева Н.А. Современное состояние и мировой опыт сохранения генетических ресурсов сельскохозяйственных животных // Успехи наук о животных. 2024. № 1. C. 5–24.
- Шичкин Г.И., Бутусов Д.В. Ежегодник по племенной работе в молочном скотоводстве в хозяйствах Российской Федерации. 2022 год. М.: ВНИИ-плем, 2023. 255 с.
- Лискун Е.Ф. Русские отродья крупного рогатого скота. М.: Новый агроном, 1928. 211 с.
- Лискун Е.Ф. Отечественные породы крупного рогатого скота. М.: Гос. изд-во с.-х. лит., 1949. 176 с.
- Диамидов А.М., Жиркович Е.Ф. Разведение и породы крупного рогатого скота. М., 1934. 408 с.
- Лискун Е.Ф. Чем хорош русский северный скот. Петроград: Изд-во Наркомзема, 1919. 23 с.
- Сабанеев Л.П Очерки Зауралья и степное хозяйство на башкирских землях. М.: типография В. Гогье, 1873. 162 с.
- Felius M. Cattle Breeds – an Encyclopedia. Doetinchem: Senefelder Mis- set., 1995.
- Абдельманова А.С., Харзикова В.Р., Форнара М.С. и др. Оценка генетических взаимосвязей пород крупного рогатого скота черно-пестрого корня с предковыми популяциями на основе полно-геномного SNP-генотипирования современных и музейных образцов // С.-хоз. биология. 2024. Т. 59. № 4. C. 605–619. https://doi.org/10.15389/agrobiology.2024.4.605rus
- Zinovieva N.A., Dotsev A.V., Sermyagin A.A. et al. Study of genetic diversity and population structure of five Russian cattle breeds using whole-genome SNP analysis // Sel’skokhozyaistvennaya Biologiya [Agricultural Biology]. 2016. № 51 (2). P. 788–800. https://doi.org/10.15389/agrobiology.2016.6.788eng
- Sermyagin A.A., Dotsev A.V., Gladyr E.A. et al. Whole-genome SNP analysis elucidates the genetic structure of Russian cattle and its relationship with Eurasian taurine breeds // Genetics, Selection, Evolution. 2018. № 50. P. 37. https://doi.org/10.1186/s12711-018-0408-8
- Yurchenko A., Yudin N., Aitnazarov R. et al. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds // Heredity. 2018. № 120(2). P. 125–137. https://doi.org/10.1038/s41437-017-0024-3
- Abdelmanova A.S., Kharzinova V.R., Volkova V.V. et al. Genetic diversity of historical and modern populations of Russian cattle breeds revealed by microsatellite analysis // Genes. 2020. № 11. P. 940. https://doi.org/10.3390/genes11080940
- Zinovieva N.A., Dotsev A.V., Sermyagin A.A. et al. Selection signatures in two oldest Russian native cattle breeds revealed using high-density single nucleotide polymorphism analysis // PLoS One. 2020. № 15 (11). https://doi.org/10.1371/journal.pone.0242200
- Wandeler P., Hoeck P.E., Keller L.F. Back to the future: Museum specimens in population genetics // Trends in Ecology & Evolution. 2007. № 22 (12). P. 634–642. https://doi.org/10.1016/j.tree.2007.08.017
- McHugo G.P., Dover M.J., MacHugh D.E. Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics // BMC Biol. 2019. V. 17. № 1. P. 98. https://doi.org/10.1186/s12915-019-0724-7
- Kijas J.W., Lenstra J.A., Hayes B. et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection // PLoS Biol. 2012. № 10 (2). https://doi.org/10.1371/journal.pbio.1001258
- Qanbari S., Gianola D., Hayes B. et al. Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle // BMC Genomics. 2011. № 12. P. 318. https://doi.org/10.1186/1471-2164-12-318
- Yurchenko A.A., Daetwyler H.D., Yudin N. et al. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation // Sci. Rep. 2018. № 8. https://doi.org/10.1038/s41598-018-31304-w
- Ruvinskiy D., Igoshin A., Yurchenko A. et al. Resequencing the Yaroslavl cattle genomes reveals signatures of selection and a rare haplotype on BTA28 likely to be related to breed phenotypes // Animal Genet. 2022. № 53 (5). P. 680–684. https://doi.org/10.1111/age.13230
- Трухачев В.И., Боронецкая О.И., Остапчук А.М. и др. Краннологическая коллекция Музея животноводства им. Е.Ф. Лискуна как объект изучения морфологических, генетических и зоотехнических особенностей пород крупного рогатого скота // Аграрная наука. 2023. № 368 (3). C. 22–31. https://doi.org/10.32634/0869-8155-2023-368-3-22-31
- Purcell S., Neale B., Todd-Brown K. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses // Am. J. Hum. Genet. 2007. V. 81. № 3. P. 559–575. https://doi.org/10.1086/519795
- Zhao F., McParland S., Kearney F. et al. Detection of selection signatures in dairy and beef cattle using high-density genomic information // Genet. Sel. Evol. 2015. V. 47. P. 49. https://doi.org/10.1186/s12711-015-0127-3
- Sabeti P.C., Varilly P., Fry B. et al. Genome-wide detection and characterization of positive selection in human populations // Nature. 2007. № 449 (7164). P. 913–918. https://doi.org/10.1038/nature06250
- Gautier M., Klassmann A., Vitalis R. REHH 2.0: A reimplementation of the R package REHH to detect positive selection from haplotype structure // Mol. Ecol. Res. 2017. № 17. P. 78–90. https://doi.org/10.1111/1755-0998.12634
- McLaren W., Gil L., Hunt S.E. et al. The ensemble variant effect predictor // Genome Biol. 2016. V. 17. № 1. P. 122. https://doi.org/10.1186/s13059-016-0974-4
- Smedley D., Haider S., Durinck S. The BioMart community portal: an innovative alternative to large, centralized data repositories // Nucl. Acids Res. 2015. V. 43. P. 589–598. https://doi.org/10.1093/nar/gkv350
- Zerbino D.R., Achuthan P., Akanni W. et al. Ensembl 2018 // Nucl. Acids Res. 2018. V. 46. Is. D1. P. D754–D761. https://doi.org/10.1093/nar/gkx1098
- Perez G., Barber G.P., Benet-Pages A. et al. The UCSC genome browser database: 2025 update // Nucl. Acids Res. 2025. № 6: 53. P. D1243–D1249. https://doi.org/10.1093/nar/gkae974
- Huang D., Sherman B., Lempicki R. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources // Nat. Protoc. 2009. V. 4. P. 44–57. https://doi.org/10.1038/nprot.2008.211
- Huang D.W., Sherman B.T., Lempicki R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists // Nucl. Acids Res. 2009. V. 37. № 1. P. 1–13. https://doi.org/10.1093/nar/gkn923.
- Hu Z.-L., Park C.A., Reecy J.M. Bringing the Animal QTLdb and CorrDB into the future: Meeting new challenges and providing updated services // Nucl. Acids Res. 2022. V. 50. Is. D1. P. D956–D961. https://doi.org/10.1093/nar/gkab1116
- NCBI Resource Coordinators: Database resources of the National Center for Biotechnology Information // Nucl. Acids Res. 2016. V. 44. Is. D1. P. D7–D19. https://doi.org/10.1093/nar/gkv1290
- Safran M., Rosen N., Twik M. et al. The GeneCards suite // Practical Guide to Life Science Databases. Singapore: Springer, 2022. P. 27–56. https://doi.org/10.1007/978-981-16-5812-9_2
- Ruch P., Teodoro D. UniProt: The universal protein knowledgebase in 2021 // Nucl. Acids Res. 2021. V. 49. Is. D1. P. D480–D489. https://doi.org/10.1093/nar/gkaa1100.
- Lim D., Kim N., Lee S. et al. Characterization of genes for beef marbling based on applying gene coexpression network // Int. J. Genomics. 2014. P. 1–10. https://doi.org/10.1155/2014/708562
- Atashi H., Chen Y., Wilmot H. et al. Single-step genome-wide association for selected milk fatty acids in Dual-Purpose Belgian Blue cows // J. Dairy Sci. 2023. № 106 (9). P. 6299–6315. https://doi.org/10.3168/jds.2022-22432
- Gonzalez Guzman J.L., Lázaro S.F., do Nascimento A.V. et al. Genome-wide association study applied to type traits related to milk yield in water buffaloes (Bubalus bubalis) // J. Dairy Sci. 2020. № 103 (2). P. 1642–1650. https://doi.org/10.3168/jds.2019-16499
- Rodrigues G.R.D., Brito L.F., Mota L.F.M. et al. Genome-wide association studies and functional annotation of pre-weaning calf mortality and reproductive traits in Nellore cattle from experimental selection lines // BMC Genomics. 2024. № 18. V. 25: 1196. https://doi.org/10.1186/s12864-024-1113-4
- Ren H., He X., Lu Y. et al. Unveiling the common loci for six body measurement traits in Chinese Wenshan cattle // Front. Genet. 2023. V. 14. https://doi.org/10.3389/fgene.2023.1318679
- Lau L.Y., Nguyen L.T., Reverter A. et al. Gene regulation could be attributed to TCF3 and other key transcription factors in the muscle of pubertal heifers // Vet. Med. Sci. 2020. V. 6. Is. 4. P. 695–710. https://doi.org/10.1002/vms3.278
- Youssef O.A., Safran S.A., Nakamura T. et al. Potential role for snORNAs in PKR activation during metabolic stress // Proc. Natl Acad. Sci. 2015. V. 112 (16). P. 5023–5028. https://doi.org/10.1073/pnas.1424044112
- Ozaki H., Loenneke J.P., Buckner S.L., Abe T. Muscle growth across a variety of exercise modalities and intensities: Contributions of mechanical and metabolic stimuli // Med. Hypotheses. 2016. № 88. P. 22–26. https://doi.org/10.1016/j.mehy.2015.12.026
- Terakado A.P.N., Costa R.B., de Camargo G.M.F. et al. Genome-wide association study for growth traits in Nelore cattle // Animal. 2018. V. 12. Is. 7. P. 1358–1362. https://doi.org/10.1017/S1751731117003068
- Khan M.Z., Chen W., Naz S. et al. Determinant genetic markers of semen quality in livestock // Front. Endocrinol. (Lausanne). 2024. V. 15. https://doi.org/10.3389/fendo.2024.1456305
- Karuthadurai T., Das D.N., Kumaresan A. et al. Sperm transcripts associated with odorant binding and olfactory transduction pathways are altered in breeding bulls producing poor-quality semen // Front. Vet. Sci. 2022. V. 9. https://doi.org/10.3389/fvets.2022.799386
- Rafter P., Gormley I.C., Purfield D. et al. Genome-wide association analyses of carcass traits using copy number variants and raw intensity values of single nucleotide polymorphisms in cattle // BMC Genomics. 2021. V. 22 (1). P. 757. https://doi.org/10.1186/s12864-021-08075-2.
- Taye M., Lee W., Jeon S. et al. Exploring evidence of positive selection signatures in cattle breeds selected for different traits // Mamm. Genome. 2017. V. 28. P. 528–541. https://doi.org/10.1007/s00335-017-9715-6
- Marina H., Pelayo R., Suárez-Vega A. et al. Genome-wide association studies (GWAS) and post-GWAS analyses for technological traits in Assaf and Churra dairy breeds // J. Dairy Sci. 2021. V. 104 (11). P. 11850–11866. https://doi.org/10.3168/jds.2021-20510
- Jaton C., Schenkel F.S., Sargolzaei M. et al. Genome-wide association study and in silico functional analysis of the number of embryos produced by Holstein donors // J. Dairy Sci. 2018. V. 101 (8). P. 7248–7257. https://doi.org/10.3168/jds.2017-13848
- Ai H., Fang X., Yang B. et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing // Nat. Genet. 2015. V. 47. P. 217–225. https://doi.org/10.1038/ng.3199
- Jung E.J., Park H.B., Lee J.B. et al. Genome-wide association analysis identifies quantitative trait loci for growth in a Landrace purebred population. // Animal Genet. 2014. V. 45 (3). P. 442–444. https://doi.org/10.1111/age.12117
补充文件

