The SWI/SNF Chromatin-Remodeling Complex is a Crucial Regulator of Gene Expression Both in Physiological and Pathological States

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

SWI/SNF is a multi-functional multi-subunit protein complex that changes the structure of chromatin and regulates the access of transcription factors to DNA. It accomplishes this by rearranging nucleosomes, facilitating the process of gene transcription. Various combinations of its subunits form specific complexes, such as BAF, GBAF, and PBAF, which are involved in various cellular processes. These complexes play a role in development, differentiation, stress response and DNA repair. The specificity of SWI/SNF's action is determined by its subunit composition, the cellular environment, and interactions with epigenetic marks, which fine-tunes gene transcription. Disruptions in its composition or function are often associated with cancerous and neurodegenerative conditions, highlighting its importance in maintaining cellular homeostasis.

作者简介

N. Soshnikova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: so2615nat@gmail.com
Moscow, Russia

D. Bayramova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

S. Georgieva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

参考

  1. Bracken A.P., Brien G.L., Verrijzer C.P. Dangerous liaisons: Interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer // Genes Dev. 2019. V. 33. № 15–16. P. 936–959. https://doi.org/10.1101/gad.326066.119
  2. Becker P.B., Workman J.L. Nucleosome remodeling and epigenetics // Cold Spring Harb. Perspect. Biol. 2013. V. 5. № 9. https://doi.org/10.1101/cshperspect.a017905
  3. Clapier C.R., Iwasa J., Cairns B.R., Peterson C.L. Mechanisms of action and regulation of ATPdependent chromatin-remodelling complexes // Nat. Rev. Mol. Cell Biol. 2017. V. 18. № 7. P. 407–422. https://doi.org/10.1038/nrm.2017.26
  4. Brahma S., Henikoff S. RSC-associated subnucleosomes define MNase-sensitive promoters in yeast // Mol. Cell. 2019. V. 73. № 2. P. 238–249. https://doi.org/10.1016/j.molcel.2018.10.046
  5. Mueller B., Mieczkowski J., Kundu S. et al. Widespread changes in nucleo- some accessibility without changes in nucleosome occupancy during a rapid transcriptional induction // Genes Dev. 2017. V. 31. № 5. P. 451–462. https://doi.org/10.1101/gad.293118.116
  6. Phelan M.L., Sif S., Narlikar G.J., Kingston R.E. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits // Mol. Cell. 1999. V. 3. № 2. P. 247–253. https://doi.org/10.1016/S1097-2765(00)80315-9
  7. Kaeser M.D., Aslanian A., Dong M.-Q. et al. BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells // J. Biol Chem. 2008. V. 283. № 47. P. 32254–32263. https://doi.org/10.1074/jbc.M806061200
  8. Moshkin Y.M., Chalkley G.E., Kan T.W. et al. Remodelers organize cellular chromatin by counteracting intrinsic histone-DNA sequence preferences in a class-specific manner // Mol. Cell Biol. 2012. V. 32. № 3. P. 675–688. https://doi.org/10.1128/mcb.06365-11
  9. Michel B.C., D’Avino A.R., Cassel S.H. et al. A noncanonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation // Nat. Cell Biol. 2018. V. 20. № 12. P. 1410–1420. https://doi.org/10.1038/s41556-018-0221-1
  10. Soshnikova N.V., Tatarskiy E.V., Tatarskiy V.V. et al. PHF10 subunit of PBAF complex mediates transcriptional activation by MYC // Oncogene. 2021. V. 40. № 42. P. 6071–6080. https://doi.org/10.1038/s41388-021-01994-0
  11. Viryasova G.M., Tatarskiy V.V. Jr, Sheynov A.A. et al. PBAF lacking PHD domains maintains transcription in human neutrophils // Biochim. Biophys. Acta Mol. Cell Res. 2019. V. 1866. № 12. https://doi.org/10.1016/j.bbamcr.2019.118525
  12. Soshnikova N.V., Azieva A.M., Klimenko N. et al. A novel chromatin-remodeling complex variant, dcPBAF, is involved in maintaining transcription in differentiated neurons // Front. Cell Dev. Biol. 2023. V. 11. https://doi.org/10.3389/fcell.2023.1271598
  13. Mashtalir N., Suzuki H., Farrell D.P. et al. A Structural model of the endogenous human BAF complex informs disease mechanisms // Cell. 2020. V. 183. № 3. P. 802–817.e24. https://doi.org/10.1016/j.cell.2020.09.051
  14. Yuan J., Chen K., Zhang W., Chen Z. Structure of human chromatin-remodelling PBAF complex bound to a nucleosome // Nature. 2022. V. 605. № 7908. P. 166–171. https://doi.org/10.1038/s41586-022-04658-5
  15. Wang L., Yu J., Yu Z. et al. Structure of nucleosomebound human PBAF complex // Nat. Commun. 2022. V. 13. № 1. P. 7644. https://doi.org/10.1038/s41467-022-34859-5
  16. Neely K.E., Hassan A.H., Wallberg A.E. et al. Activation domain-mediated targeting of the SWI/SNF complex to promoters stimulates transcription from nucleosome arrays // Mol. Cell. 1999. V. 4. № 4. P. 649–655. https://doi.org/10.1016/s1097-2765(00)80216-6
  17. Ferreira M.E., Prochasson P., Berndt K.D. et al. Activator-binding domains of the SWI/SNF chromatin remodeling complex characterized in vitro are required for its recruitment to promoters in vivo // FEBS J. 2009. V. 276. № 9. P. 2557–2565. https://doi.org/10.1111/j.1742-4658.2009.06979.x
  18. Hargreaves D.C., Crabtree G.R. ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms // Cell Res. 2011. V. 21. № 3. P. 396–420. https://doi.org/10.1038/cr.2011.32
  19. Jeong K.W., Lee Y.-H., Stallcup M.R. Recruitment of the SWI/SNF chromatin remodeling complex to steroid hormone-regulated promoters by nuclear receptor coactivator f lightless-I // J. Biol. Chem. 2009. V. 284. № 43. P. 29298–29309. https://doi.org/10.1074/jbc.m109.037010
  20. Moonen J.-R., Chappell J., Shi M. et al. KLF4 recruits SWI/SNF to increase chromatin accessibility and reprogram the endothelial enhancer landscape under laminar shear stress // Nat. Commun. 2022. V. 13. № 1. P. 4941. https://doi.org/10.1038/s41467-022-32566-9
  21. Oo J.A., Warwick T., Pálfi K. et al. Long non-coding RNAs direct the SWI/SNF complex to cell type-specific enhancers // Nat. Commun. 2025. V. 16. № 1. P. 131. https://doi.org/10.1038/s41467-024-55539-6
  22. Boulay G., Sandoval G.J., Riggi N. et al. Cancerspecific retargeting of BAF complexes by a prion-like domain // Cell. 2017. V. 171. № 1. P. 163–178. https://doi.org/10.1016/j.cell.2017.07.036
  23. Wang Y., Zolotarev N., Yang C.-Y. et al. A prionlike domain in transcription factor EBF1 promotes phase separation and enables B cell programming of progenitor chromatin // Immunity. 2020. V. 53. № 6. P. 1151–1167. https://doi.org/10.1016/j.immuni.2020.10.009
  24. Patil A., Strom A.R., Paulo J.A. et al. A disordered region controls cBAF activity via condensation and partner recruitment // Cell. 2023. V. 186. № 22. P. 4936–4955. https://doi.org/10.1016/j.cell.2023.08.032
  25. Wei M.-T., Chang Y.-C., Shimobayashi S.F. el al. Nucleated transcriptional condensates amplify gene expression // Nat. Cell Biol. 2020. V. 22. № 10. P. 1187–1196. https://doi.org/10.1038/s41556-020-00578-6
  26. Ryu K., Park G., Cho W.-K. Emerging insights into transcriptional condensates // Exp. Mol. Med. 2024. V. 56. № 4. P. 820–826. https://doi.org/10.1038/s12276-024-01228-9
  27. Wibisana J.N., Inaba T., Shinohara H. et al. Enhanced transcriptional heterogeneity mediated by NF-κB super-enhancers // PLoS Genet. 2022. V. 18. № 6. https://doi.org/10.1371/journal.pgen.1010235
  28. Du M., Stitzinger S.H., Spille J.-H. et al. Direct observation of a condensate effect on super-enhancer controlled gene bursting // Cell. 2024. V. 187. № 2. P. 331–344. https://doi.org/10.1016/j.cell.2023.12.005
  29. Tang S.C., Vijayakumar U., Zhang Y., Fullwood M.J. Super-enhancers, phase-separated condensates, and 3D genome organization in cancer // Cancers (Basel). 2022. V. 14. № 12. https://doi.org/10.3390/cancers14122866
  30. Hnisz D., Shrinivas K., Young R.A. et al. A phase separation model for transcriptional control // Cell. 2017. V. 169. № 1. P. 13–23. https://doi.org/10.1016/j.cell.2017.02.007
  31. Davis R.B., Supakar A., Ranganath A.K. et al. Heterotypic interactions can drive selective cocondensation of prion-like low-complexity domains of FET proteins and mammalian SWI/SNF complex // Nat. Commun. 2024. V. 15. № 1. P. 1168. https://doi.org/10.1038/s41467-024-44945-5
  32. Davis R.B., Kaur T., Moosa M.M., Banerjee P.R. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion‐like domains // Protein Sci. 2021. V. 30. № 7. P. 1454–1466. https://doi.org/10.1002/pro.4127
  33. Mittal P., Roberts C.W.M. The SWI/SNF complex in cancer – biology, biomarkers and therapy // Nat. Rev. Clin. Oncol. 2020. V. 17. № 7. P. 435–448. https://doi.org/10.1038/s41571-020-0357-3
  34. Wanior M., Krämer A., Knapp S., Joerger A.C. Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy // Oncogene. 2021. V. 40. № 21. P. 3637–3654. https://doi.org/10.1038/s41388-021-01781-x
  35. Centore R.C., Sandoval G.J., Soares L.M.M. et al. Mammalian SWI/SNF chromatin remodeling complexes: Emerging mechanisms and therapeutic strategies // Trends Genet. 2020. V. 36. № 12. P. 936–950. https://doi.org/10.1016/j.tig.2020.07.011
  36. Liao L., Alicea-Velázquez N.L., Langbein L. et al. High affinity binding of H3K14ac through collaboration of bromodomains 2, 4 and 5 is critical for the molecular and tumor suppressor functions of PBRM1 // Mol. Oncol. 2019. V. 13. № 4. P. 811–828. https://doi.org/10.1002/1878-0261.12434
  37. Slaughter M.J., Shanle E.K., McFadden A.W. et al. PBRM1 bromodomains variably inf luence nucleosome interactions and cellular function // J. Biol. Chem. 2018. V. 293. № 35. P. 13592–13603. https://doi.org/10.1074/jbc.RA118.003381
  38. Yao X., Hong J.H., Nargund A.M. et al. PBRM1-deficient PBAF complexes target aberrant genomic loci to activate the NF-κB pathway in clear cell renal cell carcinoma // Nat. Cell. Biol. 2023. V. 25. № 5. P. 765–777. https://doi.org/10.1038/s41556-023-01122-y
  39. Peng C., Zhou J., Liu H.Y. et al. The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain // J. Cell Biochem. 2006. V. 97. № 4. P. 882–892. https://doi.org/10.1002/jcb.20645
  40. Burrows A.E., Smogorzewska A., Elledge S.J. Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence // PNAS USA. 2010. V. 107. № 32. P. 14280–14285. https://doi.org/10.1073/pnas.1009559107
  41. Mondal J., Zhang J., Qing F. et al. Brd7 loss reawakens dormant metastasis initiating cells in lung by forging an immunosuppressive niche // Nat. Commun. 2025. V. 16. № 1. P. 1378. https://doi.org/10.1038/s41467-025-56347-2
  42. Park S.W., Lee J.M. Emerging roles of BRD7 in pathophysiology // Int. J. Mol. Sci. 2020. V. 21. № 19. https://doi.org/10.3390/ijms21197127
  43. Theodoulou N.H., Bamborough P., Bannister A.J. et al. Discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition // J. Med. Chem. 2016. V. 59. № 4. P. 1425–1439. https://doi.org/10.1021/acs.jmedchem.5b00256
  44. Filippakopoulos P., Picaud S., Mangos M. et al. Histone recognition and large-scale structural analysis of the human bromodomain family // Cell. 2012. V. 149. № 1. P. 214–231. https://doi.org/10.1016/j.cell.2012.02.013
  45. Gatchalian J., Malik S., Ho J. et al. A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells // Nat. Commun. 2018. V. 9. № 1. P. 5139. https://doi.org/10.1038/s41467-018-07528-9
  46. Chugunov A.O., Potapova N.A., Klimenko N.S. et al. Conserved structure and evolution of DPF domain of PHF10-the specific subunit of PBAF chromatin remodeling complex // Int. J. Mol. Sci. 2021. V. 22. № 20. https://doi.org/10.3390/ijms222011134
  47. Mertsalov I.B., Kulikova D.A., Alimova-Kost M.V. et al. Structure and expression of two members of the d4 gene family in mouse // Mamm. Genome. 2000. V. 11. № 1. P. 72–74. https://doi.org/10.1007/s003350010014
  48. Lange M., Kaynak B., Forster U.B. et al. Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex // Genes Dev. 2008. V. 22. № 17. P. 2370–2384. https://doi.org/10.1101/gad.471408
  49. Hyun K., Ahn J., Kim H. et al. The BAF complex enhances transcription through interaction with H3K56ac in the histone globular domain // Nat. Commun. 2024. V. 15. № 1. P. 9614. https://doi.org/10.1038/s41467-024-53981-0
  50. Krasteva V., Crabtree G.R., Lessard J.A. The BAF45a/ PHF10 subunit of SWI/SNF-like chromatin remodeling complexes is essential for hematopoietic stem cell maintenance // Exp. Hematol. 2017. V. 48. P. 58–71. https://doi.org/10.1016/j.exphem.2016.11.008
  51. Schuettengruber B., Bourbon H.-M., Di Croce L., Cavalli G. Genome regulation by polycomb and Trithorax: 70 years and counting // Cell. 2017. V. 171. № 1. P. 34–57. https://doi.org/10.1016/j.cell.2017.08.002
  52. Pengelly A.R., Copur Ö., Jäckle H. et al. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb // Science. 2013. V. 339. № 6120. P. 698–699. https://doi.org/10.1126/science.1231382
  53. Entrevan M., Schuettengruber B., Cavalli G. Regulation of genome architecture and function by polycomb proteins // Trends Cell Biol. 2016. V. 26. № 7. P. 511–525. https://doi.org/10.1016/j.tcb.2016.04.009
  54. Ogiyama Y., Schuettengruber B., Papadopoulos G.L. et al. Polycomb-dependent chromatin looping contributes to gene silencing during Drosophila development // Mol. Cell. 2018. V. 71. № 1. P. 73–88. https://doi.org/10.1016/j.molcel.2018.05.032
  55. Nakayama R.T., Pulice J.L., Valencia A.M. et al. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters // Nat. Genet. 2017. V. 49. № 11. P. 1613–1623. https://doi.org/10.1038/ng.3958
  56. Wang L., Jahren N., Miller E.L. et al. Correction for Wang et al. “comparative analysis of chromatin binding by sex comb on midleg (SCM) and other polycomb group repressors at a Drosophila hox gene” // Mol. Cell Biol. 2017. V. 37. № 15. https://doi.org/10.1128/MCB.00148-17
  57. Kadoch C., Williams R.T., Calarco J.P. et al. Dynamics of BAF-polycomb complex opposition on heterochromatin in normal and oncogenic states // Nat. Genet. 2017. V. 49. № 2. P. 213–222. https://doi.org/10.1038/ng.3734
  58. Kia S.K., Gorski M.M., Giannakopoulos S., Verrijzer C.P. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus // Mol. Cell Biol. 2008. V. 28. № 10. P. 3457–3464. https://doi.org/10.1128/mcb.02019-07
  59. Han D., Jeon S., Sohn D.H. et al. SRG3, a core component of mouse SWI/SNF complex, is essential for extra-embryonic vascular development // Dev. Biol. 2008. V. 315. № 1. P. 136–146. https://doi.org/10.1016/j.ydbio.2007.12.024
  60. Bultman S., Gebuhr T., Mantia L. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes Polycomb and trithorax groups, play crucial roles in transcriptional regulation and participate in diverse processes, including cell proliferation and differentiation // Mol. Cell. 2000. V. 6. № 6. P. 1287–1295. https://doi.org/10.1016/s1097-2765(00)00127-1
  61. Roberts C.W., Galusha S.A., McMenamin M.E. et al. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice // PNAS USA. 2000. V. 97. № 25. P. 13796–13800. https://doi.org/10.1073/pnas.250492697
  62. Kidder B.L., Palmer S., Knott J.G. SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotencyrelated genes in embryonic stem cells // Stem Cells. 2009. V. 27. № 2. P. 317–328. https://doi.org/10.1634/stemcells.2008-0710
  63. Valencia A.M., Sankar A., van der Sluijs P.J. et al. Landscape of mSWI/SNF chromatin remodeling complex perturbations in neurodevelopmental disorders // Nat. Genet. 2023. V. 55. № 8. P. 1400–1412. https://doi.org/10.1038/s41588-023-01451-6
  64. Trejo-Villegas O.A., Heijink I.H., Ávila-Moreno F. Preclinical evidence in the assembly of mammalian SWI/SNF complexes: Epigenetic insights and clinical perspectives in human lung disease therapy // Mol. Ther. 2024. V. 32. № 8. P. 2470–2488. https://doi.org/10.1016/j.ymthe.2024.06.026
  65. Hodges C., Kirkland J.G., Crabtree G.R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer // Cold Spring Harb. Perspect. Med. 2016. V. 6. № 8. https://doi.org/10.1101/cshperspect.a026930
  66. Amoretti M., Amsler C., Bonomi G. et al. Production and detection of cold antihydrogen atoms // Nature. 2002. V. 419. № 6906. P. 456–459. https://doi.org/10.1038/nature01096
  67. Alfert A., Moreno N., Kerl K. The BAF complex in development and disease // Epigenetics Chromatin. 2019. V. 12. № 1. https://doi.org/10.1186/s13072-019-0264-y
  68. Masliah-Planchon J., Bièche I., Guinebretière J.-M. et al. SWI/SNF chromatin remodeling and human malignancies // Annu. Rev. Pathol. 2015. V. 10. P. 145–171. https://doi.org/10.1146/annurev-pathol-012414-040445
  69. Andrades A., Peinado P., Alvarez-Perez J.C. et al. SWI/SNF complexes in hematological malignancies: Biological implications and therapeutic opportunities // Mol. Cancer. 2023. V. 22. № 1. P. 39. https://doi.org/10.1186/s12943-023-01736-8
  70. McBride M.J., Kadoch C. Disruption of mammalian SWI/SNF and polycomb complexes in human sarcomas: Mechanisms and therapeutic opportunities // J. Pathol. 2018. V. 244. № 5. P. 638–649. https://doi.org/10.1002/path.5042
  71. Doan D.N., Veal T.M., Yan Z. et al. Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes // Oncogene. 2004. V. 23. № 19. P. 3462–3473. https://doi.org/10.1038/sj.onc.1207472
  72. Jamshidi F., Bashashati A., Shumansky K. et al. The genomic landscape of epithelioid sarcoma cell lines and tumours // J. Pathol. 2016. V. 238. № 1. P. 63–73. https://doi.org/10.1002/path.4636
  73. Oruetxebarria I., Venturini F., Kekarainen T. et al. p16 INK4a is required for hSNF5 chromatin remodelerinduced cellular senescence in malignant rhabdoid tumor cells // J. Biol. Chem. 2004. V. 279. № 5. P. 3807–3816. https://doi.org/10.1074/jbc.M309333200
  74. Inagaki H., Nagasaka T., Otsuka T. et al. Association of SYT-SSX fusion types with proliferative activity and prognosis in synovial sarcoma // Mod. Pathol. 2000. V. 13. № 5. P. 482–488. https://doi.org/10.1038/modpathol.3880083
  75. Kadoch C., Crabtree G.R. Abstract PR05: Reversing the oncogenic roles of misdirected chromatin remodeling: Disruption of mSWI/SNF (BAF) complexes by the SS18-SSX fusion in human synovial sarcoma // Cancer Res. 2013. V. 73. № 13. https://doi.org/10.1158/1538-7445.cec13-pr05
  76. Buscarlet M., Krasteva V., Ho L. et al. Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance // Blood. 2014. V. 123. № 11. P. 1720–1728. https://doi.org/10.1182/blood-2013-02-483495
  77. Wilson B.G., Helming K.C., Wang X. et al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation // Mol. Cell Biol. 2014. V. 34. № 6. P. 1136–1144. https://doi.org/10.1128/mcb.01372-13
  78. Sokpor G., Xie Y., Rosenbusch J., Tuoc T. Chromatin remodeling BAF (SWI/SNF) complexes in neural development and disorders // Front. Mol. Neurosci. 2017. V. 10. P. 243. https://doi.org/10.3389/fnmol.2017.00243
  79. Feehley T., O’Donnell C.W., Mendlein J. et al. Drugging the epigenome in the age of precision medicine // Clin. Epigenetics. 2023. V. 15. № 1. P. 6. https://doi.org/10.1186/s13148-022-01419-z
  80. Malone H.A., Roberts C.W.M. Chromatin remodellers as therapeutic targets // Nat. Rev. Drug Discov. 2024. V. 23. № 9. P. 661–681. https://doi.org/10.1038/s41573-024-00978-5
  81. Ordonez-Rubiano S.C., Maschinot C.A., Wang S. et al. Rational design and development of selective BRD7 bromodomain inhibitors and their activity in prostate cancer // J. Med. Chem. 2023. V. 66. № 16. P. 11250–11270. https://doi.org/10.1021/acs.jmedchem.3c00671
  82. Hohmann A.F., Martin L.J., Minder J.L. et al. Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition // Nat. Chem. Biol. 2016. V. 12. № 9. P. 672–679. https://doi.org/10.1038/nchembio.2115
  83. Weisberg E., Chowdhury B., Meng C. et al. BRD9 degraders as chemosensitizers in acute leukemia and multiple myeloma // Blood Cancer J. 2022. V. 12. № 7. P. 110. https://doi.org/10.1038/s41408-022-00704-7
  84. Cui H., Yi H., Bao H. et al. The SWI/SNF chromatin remodeling factor DPF3 regulates metastasis of ccRCC by modulating TGF-β signaling // Nat. Commun. 2022. V. 13. № 1. P. 4680. https://doi.org/10.1038/s41467-022-32472-0
  85. Brechalov A.V., Georgieva S.G., Soshnikova N.V. Mammalian cells contain two functionally distinct PBAF complexes incorporating different isoforms of PHF10 signature subunit // Cell Cycle. 2014. V. 13. № 12. P. 1970–1979. https://doi.org/10.4161/cc.28922
  86. Békés M., Langley D.R., Crews C.M. PROTAC targeted protein degraders: the past is prologue // Nat. Rev. Drug Discov. 2022. V. 21. № 3. P. 181–200. https://doi.org/10.1038/s41573-021-00371-6
  87. Winter G.E., Buckley D.L., Paulk J. et al. Phthalimide conjugation as a strategy for in vivo target protein degradation // Science. 2015. V. 348. № 6241. P. 1376–1381. https://doi.org/10.1126/science.aab1433

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».