Bacterial Biofilms as a Reservoir of Amyloids Formed Through Specific and Nonspecific Mechanisms

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Amyloids are protein aggregates with fibrillar morphology and a characteristic spatial structure called “cross-β”. Amyloids have been known for over 150 years, and many of them are associated with the development of predominantly incurable human diseases called amyloidoses, some of which including Alzheimer’s disease are of high social significance. At the turn of the 21st century, it was established that amyloids not only result from protein folding disorders but are involved in performing biological functions in of all three domains of the living world: archaea, bacteria, and eukaryotes including humans. The greatest diversity of functional amyloids has been described in bacteria in which these protein aggregates are involved mainly in the processes of biofilm formation that play an important role in the development of bacterial infections and antibiotic resistance. Amyloid fibrils represent an important structural component of the biofilm matrix in various groups of bacteria. Although some bacterial amyloids are formed by specific secretion and assembly systems, the mechanisms of formation of another group of bacterial amyloids, including amyloid states of outer membrane proteins and components of the translation apparatus, are unclear. Current evidence suggests that more general, “non-specific” mechanisms, including regulated cell death during biofilm development, may be involved in the formation of such amyloids.

作者简介

A. Nizhnikov

Saint Petersburg State University; All-Russian Research Institute of Agricultural Microbiology

Email: a.nizhnikov@spbu.ru
Saint Petersburg, Russia; Saint Petersburg, Pushkin, Russia

参考

  1. Sunde M., Serpell L.C., Bartlam M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction // J. Mol. Biol. 1997. V. 273. P. 729–739. https://doi.org/10.1006/jmbi.1997.1348
  2. Iadanza M.G., Jackson M.P., Hewitt E.W. et al. A new era for understanding amyloid structures and diseas // Nat. Rev. Mol. Cell Biol. 2018. V. 19. P. 755–773. https://doi.org/10.1038/s41580-018-0060-8
  3. Selkoe D., Ihara Y., Salazar F. Alzheimer’s disease: Insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea // Science. 1982. V. 215. P. 1243–1245. https://doi.org/10.1126/science.6120571
  4. Bellinger-Kawahara C., Diener T.O., McKinley M.P. et al. Purified scrapie prions resist inactivation by procedures that hydrolyze, modify, or shear nucleic acids // Virology. 1987. V. 160. P. 271–274. https://doi.org/10.1016/0042-6822(87)90072-9
  5. Saunders S.E., Bartelt-Hunt S.L., Bartz J.C. Prions in the environment: occurrence, fate and mitigation // Prion. 2008. V. 2. P. 162–169. https://doi.org/10.4161/pri.2.4.7951
  6. Virchow R. Ueber eine im Gehirn und ruckenmark des menschen aufgefunde substanz mit der chemishen reaction der cellulose // Virchows Arch. Path. Anat. Physiol. 1854. V. 6. P. 135–138.
  7. Sipe J.D., Cohen A.S. Review: History of the amyloid fibril // J. Struct. Biol. 2000. V. 130. P. 88–98. https://doi.org/10.1006/jsbi.2000.4221
  8. Kyle R.A. Amyloidosis: A convoluted story // Br. J. Haematol. 2001. V. 114. P. 529–538. https://doi.org/10.1046/j.1365-2141.2001.02999.x
  9. Buxbaum J.N., Dispenzieri A., Eisenberg D.S. et al. Amyloid nomenclature 2022: Update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee // Amyloid. 2022. V. 29. P. 213–219. https://doi.org/10.1080/13506129.2022.2147636
  10. Ano Bom A.P., Rangel L.P., Costa D.C. et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: Implications for cancer // J. Biol. Chem. 2012. V. 287. P. 28152–28162. https://doi.org/10.1074/jbc.M112.340638
  11. Ghosh S., Salot S., Sengupta S. et al. p53 amyloid formation leading to its loss of function: Implications in cancer pathogenesis // Cell Death Differ. 2017. V. 24. P. 1784–1798. https://doi.org/10.1038/cdd.2017.105
  12. Sengupta S., Singh N., Paul A. et al. p53 amyloid pathology is correlated with higher cancer grade irrespective of the mutant or wild-type form // J. Cell Sci. 2023. V. 136. https://doi.org/10.1242/jcs.261017
  13. Bolton D.C., McKinley M.P., Prusiner S.B. Identification of a protein that purifies with the scrapie prion // Science. 1982. V. 218. P. 1309–1311. https://doi.org/10.1126/science.6815801
  14. Prusiner S.B. Prions // PNAS USA. 1998. V. 95. P. 13363–13383. https://doi.org/10.1073/pnas.95.23.13363
  15. Nizhnikov A.A., Antonets K.S., Inge-Vechtomov S.G. Amyloids: From pathogenesis to function // Biochemistry (Moscow). 2015. V. 80 (9). P. 1127–1144. https://doi.org/10.1134/S0006297915090047
  16. Maji S.K., Perrin M.H., Sawaya M.R. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules // Science. 2009. V. 325. P. 328–332. https://doi.org/10.1126/science.1173155
  17. Fowler D.M., Koulov A.V., Alory-Jost C. et al. Functional amyloid formation within mammalian tissue // PLoS Biol. 2006. V. 4. https://doi.org/10.1371/journal.pbio.0040006
  18. Antonets K.S., Belousov M.V., Sulatskaya A.I. et al. Accumulation of storage proteins in plant seeds is mediated by amyloid formation // PLoS Biol. 2020. V. 18. https://doi.org/10.1371/journal.pbio.3000564
  19. Antonets K.S., Nizhnikov A.A. Predicting amyloidogenic proteins in the proteomes of plants // Int. J. Mol. Sci. 2017. V. 18. № 10. https://doi.org/10.3390/ijms18102155
  20. Sulatsky M.I., Belousov M.V., Kosolapova A.O. et al. Amyloid fibrils of Pisum sativum L. vicilin inhibit pathological aggregation of mammalian proteins // Int. J. Mol. Sci. 2023. V. 24. https://doi.org/10.3390/ijms241612932
  21. Chapman M.R., Robinson L.S., Pinkner J.S. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation // Science. 2002. V. 295. P. 851–855. https://doi.org/10.1126/science.1067484
  22. Hung C., Zhou Y., Pinkner J.S. et al. Escherichia coli biofilms have an organized and complex extracellular matrix structure // MBio. 2013. V. 4. https://doi.org/10.1128/mBio.00645-13
  23. Van Gerven N., Van der Verren S.E., Reiter D.M., Remaut H. The Role of functional amyloids in bacterial virulence // J. Mol. Biol. 2018. V. 430. P. 3657–3684. https://doi.org/10.1016/j.jmb.2018.07.010
  24. Penesyan A., Paulsen I.T., Kjelleberg S., Gillings M.R. Three faces of biofilms: A microbial lifestyle, a nascent multicellular organism, and an incubator for diversity // NPJ Biofilms Microbiomes. 2021. V. 7. № 1. P. 80. https://doi.org/10.1038/s41522-021-00251-2
  25. Perry E.K., Tan M.-W. Bacterial biofilms in the human body: Prevalence and impacts on health and disease // Front. Cell. Infect. Microbiol. 2023. V. 13. https://doi.org/10.3389/fcimb.2023.1237164
  26. Flemming H.-C., Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms // Nat. Rev. Microbiol. 2019. V. 17. P. 247–260. https://doi.org/10.1038/s41579-019-0158-9
  27. Zhao A., Sun J., Liu Y. Understanding bacterial biofilms: From definition to treatment strategies // Front. Cell. Infect. Microbiol. 2023. V. 13. https://doi.org/10.3389/fcimb.2023.1137947
  28. Liu H.Y., Prentice E.L., Webber M.A. Mechanisms of antimicrobial resistance in biofilms // NPJ Antimicrob. Resist. 2024. V. 2. P. 27. https://doi.org/10.1038/s44259-024-00046-3
  29. Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body // PLoS Biol. 2016. V. 14. https://doi.org/10.1371/journal.pbio.1002533
  30. Buret A.G., Allain T. Gut microbiota biofilms: From regulatory mechanisms to therapeutic targets // J. Exp. Med. 2023. V. 220. https://doi.org/10.1084/jem.20221743
  31. Fayoud H., Belousov M.V., Antonets K.S., Nizhnikov A.A. Pathogenesis-associated bacterial amyloids: The network of interactions // Biochemistry (Moscow). 2024. V. 89. P. 2107–2132. https://doi.org/10.1134/S0006297924120022
  32. Dueholm M.S., Petersen S.V., Sønderkær M. et al. Functional amyloid in pseudomonas // Mol. Microbiol. 2010. V. 77. P. 1009–1020. https://doi.org/10.1111/j.1365-2958.2010.07269.x
  33. Rouse S.L., Matthews S.J., Dueholm M.S. Ecology and biogenesis of functional amyloids in Pseudomonas // J. Mol. Biol. 2018. V. 430. № 20. P. 3685–3695. https://doi.org/10.1016/j.jmb.2018.05.004
  34. Alteri C.J., Xicohtencatl-Cortes J., Hess S. et al. Mycobacterium tuberculosis produces pili during human infection // Proc. Natl Acad. Sci. USA. 2007. V. 104. P. 5145–5150. https://doi.org/10.1073/pnas.0602304104
  35. Taglialegna A., Navarro S., Ventura S. et al. Staphylococcal bap proteins build amyloid scaffold biofilm matrices in response to environmental signals // PLoS Pathog. 2016. V. 12. https://doi.org/10.1371/journal.ppat.1005711
  36. Dutta A., Bhattacharyya S., Kundu A. et al. Macroscopic amyloid fiber formation by staphylococcal biofilm associated SuhB protein // Biophys. Chem. 2016. V. 217. P. 32–41. https://doi.org/10.1016/j.bpc.2016.07.006
  37. Wang Y., Jiang J., Gao Y. et al. Staphylococcus epidermidis small basic protein (Sbp) forms amyloid fibrils, consistent with its function as a scaffolding protein in biofilms // J. Biol. Chem. 2018. V. 293. P. 14296–14311. https://doi.org/10.1074/jbc.RA118.002448
  38. Yarawsky A.E., Johns S.L., Schuck P., Herr A.B. The biofilm adhesion protein Aap from Staphylococcus epidermidis forms zinc-dependent amyloid fibers // J. Biol. Chem. 2020. V. 295. № 14. P. 4411–4427. https://doi.org/10.1074/jbc.RA119.010874
  39. Besingi R.N., Wenderska I.B., Senadheera D.B. et al. Functional amyloids in streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c // Microbiology. 2017. V. 163. P. 488–501. https://doi.org/10.1099/mic.0.000443
  40. Di Cologna N.M., Samaddar S., Valle C.A. et al. Amyloid aggregation of Streptococcus mutans Cnm inf luences its collagen-binding activity // Appl. Environ. Microbiol. 2021. V. 87. https://doi.org/10.1128/AEM.01149-21
  41. Taglialegna A., Matilla-Cuenca L., Dorado-Morales P. et al. The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers // NPJ Biofilms Microbiomes. 2020. V. 6. № 1. P. 15. https://doi.org/10.1038/s41522-020-0125-2
  42. Markande A.R., Nerurkar A.S. Bioemulsifier (BEAM1) produced by Solibacillus silvestris AM1 is a functional amyloid that modulates bacterial cell-surface properties // Biofouling. 2016. V. 32. P. 1153–1162. https://doi.org/10.1080/08927014.2016.1232716
  43. Joseph Sahaya Rajan J., Chinnappan Santiago T., Singaravel R., Ignacimuthu S. Outer membrane protein C (OmpC) of Escherichia coli induces neurodegeneration in mice by acting as an amyloid // Biotechnol. Lett. 2016. V. 38. P. 689–700. https://doi.org/10.1007/s10529-015-2025-8
  44. Belousov M.V., Kosolapova A.O., Fayoud H. et al. OmpC and OmpF outer membrane proteins of Escherichia coli and Salmonella enterica form bona fide amyloids // Int. J. Mol. Sci. 2023. V. 24. https://doi.org/10.3390/ijms242115522
  45. Montes García J.F., Vaca S., Delgado N.L. et al. Mannheimia haemolytica OmpP2-like is an amyloidlike protein, forms filaments, takes part in cell adhesion and is part of biofilms // Antonie Van Leeuwenhoek. 2018. V. 111. № 12. P. 2311–2321. https://doi.org/10.1007/s10482-018-1122-9
  46. Kosolapova A.O., Belousov M.V., Sulatskaya A.I. et al. Two novel amyloid proteins, ropA and ropB, from the root nodule bacterium Rhizobium leguminosarum // Biomolecules. 2019. V. 9. № 11. https://doi.org/10.3390/biom9110694
  47. Kosolapova A.O., Belousov M.V., Sulatsky M.I. et al. RopB protein of Rhizobium leguminosarum bv. viciae adopts amyloid state during symbiotic interactions with pea (Pisum sativum L.) // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.1014699
  48. López-Ochoa J., Montes-García J.F., Vázquez C. et al. Gallibacterium elongation factor-Tu possesses amyloid-like protein characteristics, participates in cell adhesion, and is present in biofilms // J. Microbiol. 2017. V. 55. P. 745–752. https://doi.org/10.1007/s12275-017-7077-0
  49. Shahnawaz M., Park K.W., Mukherjee A. et al. Prionlike characteristics of the bacterial protein Microcin E492 // Sci. Rep. 2017. V. 7. P. 1–16. https://doi.org/10.1038/srep45720
  50. Bavdek A., Kostanjšek R., Antonini V. et al. PH dependence of listeriolysin O aggregation and poreforming ability // FEBS J. 2012. V. 279. P. 126–141. https://doi.org/10.1111/j.1742-4658.2011.08405.x
  51. Schwartz K., Syed A.K., Stephenson R.E. et al. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms // PLoS Pathog. 2012. V. 8. https://doi.org/10.1371/journal.ppat.1002744
  52. Admane N., Kothandan R., Biswas S. Amyloid transformations of phenol soluble modulin α1 in Staphylococcus aureus and their modulation deploying a prenylated chalcone // Sci. Rep. 2024. V. 14. https://doi.org/10.1038/s41598-024-69344-0
  53. Jumper J., Evans R., Pritzel A. et al. Highly accurate protein structure prediction with AlphaFold // Nature. 2021. V. 596. P. 583–589. https://doi.org/10.1038/s41586-021-03819-2
  54. Varadi M., Bertoni D., Magana P. et al. AlphaFold protein structure database in 2024: Providing structure coverage for over 214 million protein sequences // Nucl. Acids Res. 2024. V. 52. D368–D375. https://doi.org/10.1093/nar/gkad1011
  55. Pinto R.M., Soares F.A., Reis S. et al. Innovative strategies toward the disassembly of the EPS matrix in bacterial biofilms // Front. Microbiol. 2020. V. 11. https://doi.org/10.3389/fmicb.2020.00952
  56. Reichhardt C., Cegelski L. Solid-state NMR for bacterial biofilms // Mol. Phys. 2014. V. 112. P. 887–894. https://doi.org/10.1080/00268976.2013.837983
  57. Akbey Ü., Andreasen M. Functional amyloids from bacterial biofilms – structural properties and interaction partners // Chem. Sci. 2022. V. 13. № 22. https://doi.org/10.1039/d2sc00645f
  58. Munhoz D.D., Amanda C.R., Fernanda F.S. et al. E. coli common pili promote the fitness and virulence of a hybrid aEPEC/ExPEC strain within diverse host environments // Gut Microbes. 2023. V. 15. https://doi.org/10.1080/19490976.2023.2190308
  59. Subedi S., Sasidharan S., Nag N. et al. Amyloid crossseeding: mechanism, implication, and inhibition // Molecules. 2022. V. 27. https://doi.org/10.3390/molecules27061776
  60. Zhou Y., Smith D., Leong B.J. et al. Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms // J. Biol. Chem. 2012. V. 287. P. 35092–35103. https://doi.org/10.1074/jbc.M112.383737
  61. Desai S., Sanghrajka K., Gajjar D. High adhesion and increased cell death contribute to strong biofilm formation in Klebsiella pneumoniae // Pathogens. 2019. V. 8. https://doi.org/10.3390/pathogens8040277
  62. Gallo P.M., Rapsinski G.J., Wilson R.P. et al. AmyloidDNA composites of bacterial biofilms stimulate autoimmunity // Immunity. 2015. V. 42. P. 1171–1184. https://doi.org/10.1016/j.immuni.2015.06.002
  63. Schwartz K., Ganesan M., Payne D.E. et al. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms // Mol. Microbiol. 2015. V. 99. P. 123–134. https://doi.org/10.1111/mmi.13219
  64. Tetz G., Tetz V. Bacterial extracellular DNA promotes β-amyloid aggregation // Microorganisms. 2021. V. 9. https://doi.org/10.3390/microorganisms9061301
  65. Tetz G., Pinho M., Pritzkow S. et al. Bacterial DNA promotes Tau aggregation // Sci. Rep. 2020. V. 10. P. 2369. https://doi.org/10.1038/s41598-020-59364-x
  66. Hollenbeck E.C., Antonoplis A., Chai C. et al. Phosphoethanolamine cellulose enhances curlimediated adhesion of uropathogenic Escherichia coli to bladder epithelial cells // PNAS USA. 2018. V. 115. P. 10106–10111. https://doi.org/10.1073/pnas.1801564115
  67. Saldaña Z., Xicohtencatl-Cortes J., Avelino F. et al. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli // Env. Microbiol. 2009. V. 11. № 4. P. 992–1006. https://doi.org/10.1111/j.1462-2920.2008.01824.x
  68. Wei S., Li Y., Li K., Zhong C. Biofilm-inspired amyloid-polysaccharide composite materials // Appl. Mater. Today. 2022. V. 27. https://doi.org/10.1016/j.apmt.2022.101497
  69. Motamedi-Shad N., Monsellier E., Torrassa S. et al. Kinetic analysis of amyloid formation in the presence of heparan sulfate: Faster unfolding and change of pathway // J. Biol. Chem. 2009. V. 284. P. 29921–29934. https://doi.org/10.1074/jbc.M109.018747
  70. Iannuzzi C., Irace G., Sirangelo I. The effect of glycosaminoglycans (GAGs) on amyloid aggregation and toxicity // Molecules. 2015. V. 20. P. 2510–2528. https://doi.org/10.3390/molecules20022510
  71. Torres-Bugeau C.M., Ávila C.L., Raisman-Vozari R. et al. Characterization of heparin-induced glyceraldehyde-3-phosphate dehydrogenase early amyloid-like oligomers and their implication in α-synuclein aggregation // J. Biol. Chem. 2012. V. 287. P. 2398–2409. https://doi.org/10.1074/jbc.M111.303503
  72. Díaz-Nido J., Wandosell F., Avila J. Glycosaminoglycans and beta-amyloid, prion and tau peptides in neurodegenerative diseases // Peptides. 2002. V. 23. P. 1323–1332. https://doi.org/10.1016/s0196-9781(02)00068-2
  73. Gruys E., Ultee A., Upragarin N. Glycosaminoglycans are part of amyloid fibrils: Ultrastructural evidence in avian AA amyloid stained with cuprolinic blue and labeled with immunogold // Amyloid. 2006. V. 13. P. 13–19. https://doi.org/10.1080/13506120500535768
  74. Motamedi-Shad N., Monsellier E., Chiti F. Amyloid formation by the model protein muscle acylphosphatase is accelerated by heparin and heparan sulphate through a ccaffolding-based mechanism // J. Biochem. 2009. V. 146. P. 805–814. https://doi.org/10.1093/jb/mvp128
  75. McLaurin J., Franklin T., Zhang X. et al. Interactions of Alzheimer amyloid-β peptides with glycosaminoglycans // Eur. J. Biochem. 1999. V. 266. P. 1101–1110. https://doi.org/10.1046/j.1432-1327.1999.00957.x
  76. Mehra S., Ghosh D., Kumar R. et al. Glycosaminoglycans have variable effects on α-synuclein aggregation and differentially affect the activities of the resulting amyloid fibrils // J. Biol. Chem. 2018. V. 293. P. 12975–12991. https://doi.org/10.1074/jbc.RA118.004267
  77. Makshakova O., Bogdanova L., Faizullin D. et al. The ability of some polysaccharides to disaggregate lysozyme amyloid fibrils and renature the protein // Pharmaceutics. 2023. V. 15. https://doi.org/10.3390/pharmaceutics15020624
  78. Dai X., Hou W., Sun Y. et al. Chitosan oligosaccharides inhibit/disaggregate fibrils and attenuate amyloid β-mediated neurotoxicity // Int. J. Mol. Sci. 2015. V. 16. P. 10526–10536. https://doi.org/10.3390/ijms160510526
  79. Liang Y., Ueno M., Zha S. et al. Sulfated polysaccharide ascophyllan prevents amyloid fibril formation of human insulin and inhibits amyloid-induced hemolysis and cytotoxicity in PC12 cells // Biosci. Biotechnol. Biochem. 2021. V. 85. P. 2281–2291. https://doi.org/10.1093/bbb/zbab163
  80. Lister J.L., Horswill A.R. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal // Front. Cell. Infect. Microbiol. 2014. V. 4. https://doi.org/10.3389/fcimb.2014.00178
  81. Ramírez-Larrota J.S., Eckhard U. An introduction to bacterial biofilms and Their proteases, and their roles in host infection and immune evasion // Biomolecules. 2022. V. 12. https://doi.org/10.3390/biom12020306
  82. De Strooper B. Proteases and proteolysis in Alzheimer disease: A multifactorial view on the disease process // Physiol. Rev. 2010. V. 90. P. 465–494. https://doi.org/10.1152/physrev.00023.2009
  83. Taglialegna A., Lasa I., Valle J. Amyloid structures as biofilm matrix scaffolds // J. Bacteriol. 2016. V. 198. P. 2579–2588. https://doi.org/10.1128/JB.00122-16
  84. Rajitha K., Nancharaiah Y.V., Venugopalan V.P. Temperature induced amyloid production, biofilm formation and fitness in marine Bacillus sp. // Int. Biodeterior. Biodegradation. 2021. V. 161. https://doi.org/10.1016/j.ibiod.2021.105229
  85. Barnhart M.M., Chapman M.R. Curli biogenesis and function // Annu. Rev. Microbiol. 2006. V. 60. P. 131–147. https://doi.org/10.1146/annurev.micro.60.080805.142106
  86. Van Gerven N., Klein R.D., Hultgren S.J., Remaut H. Bacterial amyloid formation: Structural insights into curli biogensis // Trends Microbiol. 2015. V. 23. P. 693–706. https://doi.org/10.1016/j.tim.2015.07.010
  87. Robinson L.S., Ashman E.M., Hultgren S.J., Chapman M.R. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein // Mol. Microbiol. 2006. V. 59. P. 870–881. https://doi.org/10.1111/j.1365-2958.2005.04997.x
  88. Evans M.L., Chorell E., Taylor J.D. et al. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation // Mol. Cell. 2015. V. 57. P. 445–455. https://doi.org/10.1016/j.molcel.2014.12.025
  89. Zakikhany K., Harrington C.R., Nimtz M. et al. Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium // Mol. Microbiol. 2010. V. 77. P. 771–786. https://doi.org/10.1111/j.1365-2958.2010.07247.x
  90. Rouse S.L., Stylianou F., Wu H.Y.G. et al. The FapF amyloid secretion transporter possesses an atypical asymmetric coiled Coil // J. Mol. Biol. 2018. V. 430. P. 3863–3871. https://doi.org/10.1016/j.jmb.2018.06.007
  91. Allocati N., Masulli M., Di Ilio C., De Laurenzi V. Die for the community: An overview of programmed cell death in bacteria // Cell Death Dis. 2015. V. 6. e1609–e1609. https://doi.org/10.1038/cddis.2014.570
  92. Jeong G.-J., Khan F., Tabassum N. et al. Bacterial extracellular vesicles: Modulation of biofilm and virulence properties // Acta Biomater. 2024. V. 178. P. 13–23. https://doi.org/10.1016/j.actbio.2024.02.029
  93. Nizhnikov A.A., Alexandrov A.I., Ryzhova T.A. et al. Proteomic screening for amyloid proteins // PLoS One. 2014. V. 9. https://doi.org/10.1371/journal.pone.0116003
  94. Nizhnikov A.A., Ryzhova T.A., Volkov K.V. et al. Interaction of prions causes heritable traits in Saccharomyces cerevisiae // PLoS Genet. 2016. V. 12. https://doi.org/10.1371/journal.pgen.1006504
  95. Kryndushkin D., Pripuzova N., Burnett B., Shewmaker F. Non-targeted identification of prions and amyloidforming proteins from yeast and mammalian cells // J. Biol. Chem. 2013. V. 288. № 38. P. 27100–27111. https://doi.org/10.1074/jbc.M113.485359
  96. Arad E., Pedersen K.B., Malka O. et al. Staphylococcus aureus functional amyloids catalyze degradation of β-lactam antibiotics // Nat. Commun. 2023. V. 14. P. 8198. https://doi.org/10.1038/s41467-023-43624-1
  97. Miller A.L., Bessho S., Grando K., Tükel Ç. Microbiome or infections: Amyloid-containing biofilms as a trigger for complex human diseases // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.638867
  98. Friedland R.P., Chapman M.R. The role of microbial amyloid in neurodegeneration // PLoS Pathog. 2017. V. 13. https://doi.org/10.1371/journal.ppat.1006654
  99. Elkins M., Jain N., Tükel Ç. The menace within: Bacterial amyloids as a trigger for autoimmune and neurodegenerative diseases // Curr. Opin. Microbiol. 2024. V. 79. https://doi.org/10.1016/j.mib.2024.102473
  100. Matilla-Cuenca L., Toledo-Arana A., Valle J. Antibiofilm molecules targeting functional amyloids // Antibiotic. (Basel). 2021. V. 10. https://doi.org/10.3390/antibiotics10070795

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».