Bacterial Biofilms as a Reservoir of Amyloids Formed Through Specific and Nonspecific Mechanisms
- 作者: Nizhnikov A.A.1,2
-
隶属关系:
- Saint Petersburg State University
- All-Russian Research Institute of Agricultural Microbiology
- 期: 卷 61, 编号 11 (2025)
- 页面: 232–242
- 栏目: МИКРОБИОЛОГИЯ
- URL: https://bakhtiniada.ru/0016-6758/article/view/361201
- DOI: https://doi.org/10.7868/S3034510325110236
- ID: 361201
如何引用文章
详细
作者简介
A. Nizhnikov
Saint Petersburg State University; All-Russian Research Institute of Agricultural Microbiology
Email: a.nizhnikov@spbu.ru
Saint Petersburg, Russia; Saint Petersburg, Pushkin, Russia
参考
- Sunde M., Serpell L.C., Bartlam M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction // J. Mol. Biol. 1997. V. 273. P. 729–739. https://doi.org/10.1006/jmbi.1997.1348
- Iadanza M.G., Jackson M.P., Hewitt E.W. et al. A new era for understanding amyloid structures and diseas // Nat. Rev. Mol. Cell Biol. 2018. V. 19. P. 755–773. https://doi.org/10.1038/s41580-018-0060-8
- Selkoe D., Ihara Y., Salazar F. Alzheimer’s disease: Insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea // Science. 1982. V. 215. P. 1243–1245. https://doi.org/10.1126/science.6120571
- Bellinger-Kawahara C., Diener T.O., McKinley M.P. et al. Purified scrapie prions resist inactivation by procedures that hydrolyze, modify, or shear nucleic acids // Virology. 1987. V. 160. P. 271–274. https://doi.org/10.1016/0042-6822(87)90072-9
- Saunders S.E., Bartelt-Hunt S.L., Bartz J.C. Prions in the environment: occurrence, fate and mitigation // Prion. 2008. V. 2. P. 162–169. https://doi.org/10.4161/pri.2.4.7951
- Virchow R. Ueber eine im Gehirn und ruckenmark des menschen aufgefunde substanz mit der chemishen reaction der cellulose // Virchows Arch. Path. Anat. Physiol. 1854. V. 6. P. 135–138.
- Sipe J.D., Cohen A.S. Review: History of the amyloid fibril // J. Struct. Biol. 2000. V. 130. P. 88–98. https://doi.org/10.1006/jsbi.2000.4221
- Kyle R.A. Amyloidosis: A convoluted story // Br. J. Haematol. 2001. V. 114. P. 529–538. https://doi.org/10.1046/j.1365-2141.2001.02999.x
- Buxbaum J.N., Dispenzieri A., Eisenberg D.S. et al. Amyloid nomenclature 2022: Update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee // Amyloid. 2022. V. 29. P. 213–219. https://doi.org/10.1080/13506129.2022.2147636
- Ano Bom A.P., Rangel L.P., Costa D.C. et al. Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: Implications for cancer // J. Biol. Chem. 2012. V. 287. P. 28152–28162. https://doi.org/10.1074/jbc.M112.340638
- Ghosh S., Salot S., Sengupta S. et al. p53 amyloid formation leading to its loss of function: Implications in cancer pathogenesis // Cell Death Differ. 2017. V. 24. P. 1784–1798. https://doi.org/10.1038/cdd.2017.105
- Sengupta S., Singh N., Paul A. et al. p53 amyloid pathology is correlated with higher cancer grade irrespective of the mutant or wild-type form // J. Cell Sci. 2023. V. 136. https://doi.org/10.1242/jcs.261017
- Bolton D.C., McKinley M.P., Prusiner S.B. Identification of a protein that purifies with the scrapie prion // Science. 1982. V. 218. P. 1309–1311. https://doi.org/10.1126/science.6815801
- Prusiner S.B. Prions // PNAS USA. 1998. V. 95. P. 13363–13383. https://doi.org/10.1073/pnas.95.23.13363
- Nizhnikov A.A., Antonets K.S., Inge-Vechtomov S.G. Amyloids: From pathogenesis to function // Biochemistry (Moscow). 2015. V. 80 (9). P. 1127–1144. https://doi.org/10.1134/S0006297915090047
- Maji S.K., Perrin M.H., Sawaya M.R. et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules // Science. 2009. V. 325. P. 328–332. https://doi.org/10.1126/science.1173155
- Fowler D.M., Koulov A.V., Alory-Jost C. et al. Functional amyloid formation within mammalian tissue // PLoS Biol. 2006. V. 4. https://doi.org/10.1371/journal.pbio.0040006
- Antonets K.S., Belousov M.V., Sulatskaya A.I. et al. Accumulation of storage proteins in plant seeds is mediated by amyloid formation // PLoS Biol. 2020. V. 18. https://doi.org/10.1371/journal.pbio.3000564
- Antonets K.S., Nizhnikov A.A. Predicting amyloidogenic proteins in the proteomes of plants // Int. J. Mol. Sci. 2017. V. 18. № 10. https://doi.org/10.3390/ijms18102155
- Sulatsky M.I., Belousov M.V., Kosolapova A.O. et al. Amyloid fibrils of Pisum sativum L. vicilin inhibit pathological aggregation of mammalian proteins // Int. J. Mol. Sci. 2023. V. 24. https://doi.org/10.3390/ijms241612932
- Chapman M.R., Robinson L.S., Pinkner J.S. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation // Science. 2002. V. 295. P. 851–855. https://doi.org/10.1126/science.1067484
- Hung C., Zhou Y., Pinkner J.S. et al. Escherichia coli biofilms have an organized and complex extracellular matrix structure // MBio. 2013. V. 4. https://doi.org/10.1128/mBio.00645-13
- Van Gerven N., Van der Verren S.E., Reiter D.M., Remaut H. The Role of functional amyloids in bacterial virulence // J. Mol. Biol. 2018. V. 430. P. 3657–3684. https://doi.org/10.1016/j.jmb.2018.07.010
- Penesyan A., Paulsen I.T., Kjelleberg S., Gillings M.R. Three faces of biofilms: A microbial lifestyle, a nascent multicellular organism, and an incubator for diversity // NPJ Biofilms Microbiomes. 2021. V. 7. № 1. P. 80. https://doi.org/10.1038/s41522-021-00251-2
- Perry E.K., Tan M.-W. Bacterial biofilms in the human body: Prevalence and impacts on health and disease // Front. Cell. Infect. Microbiol. 2023. V. 13. https://doi.org/10.3389/fcimb.2023.1237164
- Flemming H.-C., Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms // Nat. Rev. Microbiol. 2019. V. 17. P. 247–260. https://doi.org/10.1038/s41579-019-0158-9
- Zhao A., Sun J., Liu Y. Understanding bacterial biofilms: From definition to treatment strategies // Front. Cell. Infect. Microbiol. 2023. V. 13. https://doi.org/10.3389/fcimb.2023.1137947
- Liu H.Y., Prentice E.L., Webber M.A. Mechanisms of antimicrobial resistance in biofilms // NPJ Antimicrob. Resist. 2024. V. 2. P. 27. https://doi.org/10.1038/s44259-024-00046-3
- Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body // PLoS Biol. 2016. V. 14. https://doi.org/10.1371/journal.pbio.1002533
- Buret A.G., Allain T. Gut microbiota biofilms: From regulatory mechanisms to therapeutic targets // J. Exp. Med. 2023. V. 220. https://doi.org/10.1084/jem.20221743
- Fayoud H., Belousov M.V., Antonets K.S., Nizhnikov A.A. Pathogenesis-associated bacterial amyloids: The network of interactions // Biochemistry (Moscow). 2024. V. 89. P. 2107–2132. https://doi.org/10.1134/S0006297924120022
- Dueholm M.S., Petersen S.V., Sønderkær M. et al. Functional amyloid in pseudomonas // Mol. Microbiol. 2010. V. 77. P. 1009–1020. https://doi.org/10.1111/j.1365-2958.2010.07269.x
- Rouse S.L., Matthews S.J., Dueholm M.S. Ecology and biogenesis of functional amyloids in Pseudomonas // J. Mol. Biol. 2018. V. 430. № 20. P. 3685–3695. https://doi.org/10.1016/j.jmb.2018.05.004
- Alteri C.J., Xicohtencatl-Cortes J., Hess S. et al. Mycobacterium tuberculosis produces pili during human infection // Proc. Natl Acad. Sci. USA. 2007. V. 104. P. 5145–5150. https://doi.org/10.1073/pnas.0602304104
- Taglialegna A., Navarro S., Ventura S. et al. Staphylococcal bap proteins build amyloid scaffold biofilm matrices in response to environmental signals // PLoS Pathog. 2016. V. 12. https://doi.org/10.1371/journal.ppat.1005711
- Dutta A., Bhattacharyya S., Kundu A. et al. Macroscopic amyloid fiber formation by staphylococcal biofilm associated SuhB protein // Biophys. Chem. 2016. V. 217. P. 32–41. https://doi.org/10.1016/j.bpc.2016.07.006
- Wang Y., Jiang J., Gao Y. et al. Staphylococcus epidermidis small basic protein (Sbp) forms amyloid fibrils, consistent with its function as a scaffolding protein in biofilms // J. Biol. Chem. 2018. V. 293. P. 14296–14311. https://doi.org/10.1074/jbc.RA118.002448
- Yarawsky A.E., Johns S.L., Schuck P., Herr A.B. The biofilm adhesion protein Aap from Staphylococcus epidermidis forms zinc-dependent amyloid fibers // J. Biol. Chem. 2020. V. 295. № 14. P. 4411–4427. https://doi.org/10.1074/jbc.RA119.010874
- Besingi R.N., Wenderska I.B., Senadheera D.B. et al. Functional amyloids in streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c // Microbiology. 2017. V. 163. P. 488–501. https://doi.org/10.1099/mic.0.000443
- Di Cologna N.M., Samaddar S., Valle C.A. et al. Amyloid aggregation of Streptococcus mutans Cnm inf luences its collagen-binding activity // Appl. Environ. Microbiol. 2021. V. 87. https://doi.org/10.1128/AEM.01149-21
- Taglialegna A., Matilla-Cuenca L., Dorado-Morales P. et al. The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers // NPJ Biofilms Microbiomes. 2020. V. 6. № 1. P. 15. https://doi.org/10.1038/s41522-020-0125-2
- Markande A.R., Nerurkar A.S. Bioemulsifier (BEAM1) produced by Solibacillus silvestris AM1 is a functional amyloid that modulates bacterial cell-surface properties // Biofouling. 2016. V. 32. P. 1153–1162. https://doi.org/10.1080/08927014.2016.1232716
- Joseph Sahaya Rajan J., Chinnappan Santiago T., Singaravel R., Ignacimuthu S. Outer membrane protein C (OmpC) of Escherichia coli induces neurodegeneration in mice by acting as an amyloid // Biotechnol. Lett. 2016. V. 38. P. 689–700. https://doi.org/10.1007/s10529-015-2025-8
- Belousov M.V., Kosolapova A.O., Fayoud H. et al. OmpC and OmpF outer membrane proteins of Escherichia coli and Salmonella enterica form bona fide amyloids // Int. J. Mol. Sci. 2023. V. 24. https://doi.org/10.3390/ijms242115522
- Montes García J.F., Vaca S., Delgado N.L. et al. Mannheimia haemolytica OmpP2-like is an amyloidlike protein, forms filaments, takes part in cell adhesion and is part of biofilms // Antonie Van Leeuwenhoek. 2018. V. 111. № 12. P. 2311–2321. https://doi.org/10.1007/s10482-018-1122-9
- Kosolapova A.O., Belousov M.V., Sulatskaya A.I. et al. Two novel amyloid proteins, ropA and ropB, from the root nodule bacterium Rhizobium leguminosarum // Biomolecules. 2019. V. 9. № 11. https://doi.org/10.3390/biom9110694
- Kosolapova A.O., Belousov M.V., Sulatsky M.I. et al. RopB protein of Rhizobium leguminosarum bv. viciae adopts amyloid state during symbiotic interactions with pea (Pisum sativum L.) // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.1014699
- López-Ochoa J., Montes-García J.F., Vázquez C. et al. Gallibacterium elongation factor-Tu possesses amyloid-like protein characteristics, participates in cell adhesion, and is present in biofilms // J. Microbiol. 2017. V. 55. P. 745–752. https://doi.org/10.1007/s12275-017-7077-0
- Shahnawaz M., Park K.W., Mukherjee A. et al. Prionlike characteristics of the bacterial protein Microcin E492 // Sci. Rep. 2017. V. 7. P. 1–16. https://doi.org/10.1038/srep45720
- Bavdek A., Kostanjšek R., Antonini V. et al. PH dependence of listeriolysin O aggregation and poreforming ability // FEBS J. 2012. V. 279. P. 126–141. https://doi.org/10.1111/j.1742-4658.2011.08405.x
- Schwartz K., Syed A.K., Stephenson R.E. et al. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms // PLoS Pathog. 2012. V. 8. https://doi.org/10.1371/journal.ppat.1002744
- Admane N., Kothandan R., Biswas S. Amyloid transformations of phenol soluble modulin α1 in Staphylococcus aureus and their modulation deploying a prenylated chalcone // Sci. Rep. 2024. V. 14. https://doi.org/10.1038/s41598-024-69344-0
- Jumper J., Evans R., Pritzel A. et al. Highly accurate protein structure prediction with AlphaFold // Nature. 2021. V. 596. P. 583–589. https://doi.org/10.1038/s41586-021-03819-2
- Varadi M., Bertoni D., Magana P. et al. AlphaFold protein structure database in 2024: Providing structure coverage for over 214 million protein sequences // Nucl. Acids Res. 2024. V. 52. D368–D375. https://doi.org/10.1093/nar/gkad1011
- Pinto R.M., Soares F.A., Reis S. et al. Innovative strategies toward the disassembly of the EPS matrix in bacterial biofilms // Front. Microbiol. 2020. V. 11. https://doi.org/10.3389/fmicb.2020.00952
- Reichhardt C., Cegelski L. Solid-state NMR for bacterial biofilms // Mol. Phys. 2014. V. 112. P. 887–894. https://doi.org/10.1080/00268976.2013.837983
- Akbey Ü., Andreasen M. Functional amyloids from bacterial biofilms – structural properties and interaction partners // Chem. Sci. 2022. V. 13. № 22. https://doi.org/10.1039/d2sc00645f
- Munhoz D.D., Amanda C.R., Fernanda F.S. et al. E. coli common pili promote the fitness and virulence of a hybrid aEPEC/ExPEC strain within diverse host environments // Gut Microbes. 2023. V. 15. https://doi.org/10.1080/19490976.2023.2190308
- Subedi S., Sasidharan S., Nag N. et al. Amyloid crossseeding: mechanism, implication, and inhibition // Molecules. 2022. V. 27. https://doi.org/10.3390/molecules27061776
- Zhou Y., Smith D., Leong B.J. et al. Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms // J. Biol. Chem. 2012. V. 287. P. 35092–35103. https://doi.org/10.1074/jbc.M112.383737
- Desai S., Sanghrajka K., Gajjar D. High adhesion and increased cell death contribute to strong biofilm formation in Klebsiella pneumoniae // Pathogens. 2019. V. 8. https://doi.org/10.3390/pathogens8040277
- Gallo P.M., Rapsinski G.J., Wilson R.P. et al. AmyloidDNA composites of bacterial biofilms stimulate autoimmunity // Immunity. 2015. V. 42. P. 1171–1184. https://doi.org/10.1016/j.immuni.2015.06.002
- Schwartz K., Ganesan M., Payne D.E. et al. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms // Mol. Microbiol. 2015. V. 99. P. 123–134. https://doi.org/10.1111/mmi.13219
- Tetz G., Tetz V. Bacterial extracellular DNA promotes β-amyloid aggregation // Microorganisms. 2021. V. 9. https://doi.org/10.3390/microorganisms9061301
- Tetz G., Pinho M., Pritzkow S. et al. Bacterial DNA promotes Tau aggregation // Sci. Rep. 2020. V. 10. P. 2369. https://doi.org/10.1038/s41598-020-59364-x
- Hollenbeck E.C., Antonoplis A., Chai C. et al. Phosphoethanolamine cellulose enhances curlimediated adhesion of uropathogenic Escherichia coli to bladder epithelial cells // PNAS USA. 2018. V. 115. P. 10106–10111. https://doi.org/10.1073/pnas.1801564115
- Saldaña Z., Xicohtencatl-Cortes J., Avelino F. et al. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli // Env. Microbiol. 2009. V. 11. № 4. P. 992–1006. https://doi.org/10.1111/j.1462-2920.2008.01824.x
- Wei S., Li Y., Li K., Zhong C. Biofilm-inspired amyloid-polysaccharide composite materials // Appl. Mater. Today. 2022. V. 27. https://doi.org/10.1016/j.apmt.2022.101497
- Motamedi-Shad N., Monsellier E., Torrassa S. et al. Kinetic analysis of amyloid formation in the presence of heparan sulfate: Faster unfolding and change of pathway // J. Biol. Chem. 2009. V. 284. P. 29921–29934. https://doi.org/10.1074/jbc.M109.018747
- Iannuzzi C., Irace G., Sirangelo I. The effect of glycosaminoglycans (GAGs) on amyloid aggregation and toxicity // Molecules. 2015. V. 20. P. 2510–2528. https://doi.org/10.3390/molecules20022510
- Torres-Bugeau C.M., Ávila C.L., Raisman-Vozari R. et al. Characterization of heparin-induced glyceraldehyde-3-phosphate dehydrogenase early amyloid-like oligomers and their implication in α-synuclein aggregation // J. Biol. Chem. 2012. V. 287. P. 2398–2409. https://doi.org/10.1074/jbc.M111.303503
- Díaz-Nido J., Wandosell F., Avila J. Glycosaminoglycans and beta-amyloid, prion and tau peptides in neurodegenerative diseases // Peptides. 2002. V. 23. P. 1323–1332. https://doi.org/10.1016/s0196-9781(02)00068-2
- Gruys E., Ultee A., Upragarin N. Glycosaminoglycans are part of amyloid fibrils: Ultrastructural evidence in avian AA amyloid stained with cuprolinic blue and labeled with immunogold // Amyloid. 2006. V. 13. P. 13–19. https://doi.org/10.1080/13506120500535768
- Motamedi-Shad N., Monsellier E., Chiti F. Amyloid formation by the model protein muscle acylphosphatase is accelerated by heparin and heparan sulphate through a ccaffolding-based mechanism // J. Biochem. 2009. V. 146. P. 805–814. https://doi.org/10.1093/jb/mvp128
- McLaurin J., Franklin T., Zhang X. et al. Interactions of Alzheimer amyloid-β peptides with glycosaminoglycans // Eur. J. Biochem. 1999. V. 266. P. 1101–1110. https://doi.org/10.1046/j.1432-1327.1999.00957.x
- Mehra S., Ghosh D., Kumar R. et al. Glycosaminoglycans have variable effects on α-synuclein aggregation and differentially affect the activities of the resulting amyloid fibrils // J. Biol. Chem. 2018. V. 293. P. 12975–12991. https://doi.org/10.1074/jbc.RA118.004267
- Makshakova O., Bogdanova L., Faizullin D. et al. The ability of some polysaccharides to disaggregate lysozyme amyloid fibrils and renature the protein // Pharmaceutics. 2023. V. 15. https://doi.org/10.3390/pharmaceutics15020624
- Dai X., Hou W., Sun Y. et al. Chitosan oligosaccharides inhibit/disaggregate fibrils and attenuate amyloid β-mediated neurotoxicity // Int. J. Mol. Sci. 2015. V. 16. P. 10526–10536. https://doi.org/10.3390/ijms160510526
- Liang Y., Ueno M., Zha S. et al. Sulfated polysaccharide ascophyllan prevents amyloid fibril formation of human insulin and inhibits amyloid-induced hemolysis and cytotoxicity in PC12 cells // Biosci. Biotechnol. Biochem. 2021. V. 85. P. 2281–2291. https://doi.org/10.1093/bbb/zbab163
- Lister J.L., Horswill A.R. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal // Front. Cell. Infect. Microbiol. 2014. V. 4. https://doi.org/10.3389/fcimb.2014.00178
- Ramírez-Larrota J.S., Eckhard U. An introduction to bacterial biofilms and Their proteases, and their roles in host infection and immune evasion // Biomolecules. 2022. V. 12. https://doi.org/10.3390/biom12020306
- De Strooper B. Proteases and proteolysis in Alzheimer disease: A multifactorial view on the disease process // Physiol. Rev. 2010. V. 90. P. 465–494. https://doi.org/10.1152/physrev.00023.2009
- Taglialegna A., Lasa I., Valle J. Amyloid structures as biofilm matrix scaffolds // J. Bacteriol. 2016. V. 198. P. 2579–2588. https://doi.org/10.1128/JB.00122-16
- Rajitha K., Nancharaiah Y.V., Venugopalan V.P. Temperature induced amyloid production, biofilm formation and fitness in marine Bacillus sp. // Int. Biodeterior. Biodegradation. 2021. V. 161. https://doi.org/10.1016/j.ibiod.2021.105229
- Barnhart M.M., Chapman M.R. Curli biogenesis and function // Annu. Rev. Microbiol. 2006. V. 60. P. 131–147. https://doi.org/10.1146/annurev.micro.60.080805.142106
- Van Gerven N., Klein R.D., Hultgren S.J., Remaut H. Bacterial amyloid formation: Structural insights into curli biogensis // Trends Microbiol. 2015. V. 23. P. 693–706. https://doi.org/10.1016/j.tim.2015.07.010
- Robinson L.S., Ashman E.M., Hultgren S.J., Chapman M.R. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein // Mol. Microbiol. 2006. V. 59. P. 870–881. https://doi.org/10.1111/j.1365-2958.2005.04997.x
- Evans M.L., Chorell E., Taylor J.D. et al. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation // Mol. Cell. 2015. V. 57. P. 445–455. https://doi.org/10.1016/j.molcel.2014.12.025
- Zakikhany K., Harrington C.R., Nimtz M. et al. Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium // Mol. Microbiol. 2010. V. 77. P. 771–786. https://doi.org/10.1111/j.1365-2958.2010.07247.x
- Rouse S.L., Stylianou F., Wu H.Y.G. et al. The FapF amyloid secretion transporter possesses an atypical asymmetric coiled Coil // J. Mol. Biol. 2018. V. 430. P. 3863–3871. https://doi.org/10.1016/j.jmb.2018.06.007
- Allocati N., Masulli M., Di Ilio C., De Laurenzi V. Die for the community: An overview of programmed cell death in bacteria // Cell Death Dis. 2015. V. 6. e1609–e1609. https://doi.org/10.1038/cddis.2014.570
- Jeong G.-J., Khan F., Tabassum N. et al. Bacterial extracellular vesicles: Modulation of biofilm and virulence properties // Acta Biomater. 2024. V. 178. P. 13–23. https://doi.org/10.1016/j.actbio.2024.02.029
- Nizhnikov A.A., Alexandrov A.I., Ryzhova T.A. et al. Proteomic screening for amyloid proteins // PLoS One. 2014. V. 9. https://doi.org/10.1371/journal.pone.0116003
- Nizhnikov A.A., Ryzhova T.A., Volkov K.V. et al. Interaction of prions causes heritable traits in Saccharomyces cerevisiae // PLoS Genet. 2016. V. 12. https://doi.org/10.1371/journal.pgen.1006504
- Kryndushkin D., Pripuzova N., Burnett B., Shewmaker F. Non-targeted identification of prions and amyloidforming proteins from yeast and mammalian cells // J. Biol. Chem. 2013. V. 288. № 38. P. 27100–27111. https://doi.org/10.1074/jbc.M113.485359
- Arad E., Pedersen K.B., Malka O. et al. Staphylococcus aureus functional amyloids catalyze degradation of β-lactam antibiotics // Nat. Commun. 2023. V. 14. P. 8198. https://doi.org/10.1038/s41467-023-43624-1
- Miller A.L., Bessho S., Grando K., Tükel Ç. Microbiome or infections: Amyloid-containing biofilms as a trigger for complex human diseases // Front. Immunol. 2021. V. 12. https://doi.org/10.3389/fimmu.2021.638867
- Friedland R.P., Chapman M.R. The role of microbial amyloid in neurodegeneration // PLoS Pathog. 2017. V. 13. https://doi.org/10.1371/journal.ppat.1006654
- Elkins M., Jain N., Tükel Ç. The menace within: Bacterial amyloids as a trigger for autoimmune and neurodegenerative diseases // Curr. Opin. Microbiol. 2024. V. 79. https://doi.org/10.1016/j.mib.2024.102473
- Matilla-Cuenca L., Toledo-Arana A., Valle J. Antibiofilm molecules targeting functional amyloids // Antibiotic. (Basel). 2021. V. 10. https://doi.org/10.3390/antibiotics10070795
补充文件

