Genetic Diversity of Wheat Varieties of Krasnodar Scientific Breeding School and Their Breeding Value
- Авторлар: Bespalova L.A.1, Ablova I.B.1, Puzyrnaya O.Y.1, Mudrova A.A.1, Filobok V.A.1, Yanovskii A.S.1, Guenkova E.A.1, Samarina M.A.2, Arkhipov A.A.2, Korobkova V.A.2, Alkubesi M.2, Ermolaev A.S.2, Mokhov T.D.2, Chernook A.G.2, Kroupin P.Y.2, Divashuk M.G.2
-
Мекемелер:
- National Center of Grain named after P. P. Lukyanenko
- All-Russia Research Institute of Agricultural Biotechnology
- Шығарылым: Том 61, № 11 (2025)
- Беттер: 198–207
- Бөлім: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://bakhtiniada.ru/0016-6758/article/view/361198
- DOI: https://doi.org/10.7868/S3034510325110204
- ID: 361198
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
L. Bespalova
National Center of Grain named after P. P. Lukyanenko
Email: Bespalova_l_a@rambler.ru
Krasnodar, Russia
I. Ablova
National Center of Grain named after P. P. LukyanenkoKrasnodar, Russia
O. Puzyrnaya
National Center of Grain named after P. P. LukyanenkoKrasnodar, Russia
A. Mudrova
National Center of Grain named after P. P. LukyanenkoKrasnodar, Russia
V. Filobok
National Center of Grain named after P. P. LukyanenkoKrasnodar, Russia
A. Yanovskii
National Center of Grain named after P. P. LukyanenkoKrasnodar, Russia
E. Guenkova
National Center of Grain named after P. P. LukyanenkoKrasnodar, Russia
M. Samarina
All-Russia Research Institute of Agricultural BiotechnologyMoscow, Russia
A. Arkhipov
All-Russia Research Institute of Agricultural BiotechnologyMoscow, Russia
V. Korobkova
All-Russia Research Institute of Agricultural BiotechnologyMoscow, Russia
M. Alkubesi
All-Russia Research Institute of Agricultural BiotechnologyMoscow, Russia
A. Ermolaev
All-Russia Research Institute of Agricultural BiotechnologyMoscow, Russia
T. Mokhov
All-Russia Research Institute of Agricultural BiotechnologyMoscow, Russia
A. Chernook
All-Russia Research Institute of Agricultural BiotechnologyMoscow, Russia
P. Kroupin
All-Russia Research Institute of Agricultural BiotechnologyMoscow, 0 Russia
M. Divashuk
All-Russia Research Institute of Agricultural BiotechnologyMoscow, Russia
Әдебиет тізімі
- Беспалова Л.А. Вклад генетики в «Зеленые прорывы» в селекции // VII Съезд Вавил. об-ва генетиков и селекционеров, посвященный 100-летию кафедры генетики СПбГУ, Санкт-Петербург, 18–22 июня 2019 г. СПб., 2019. С. 423.
- Borlaug N.E. Wheat breeding and its impact on world food supply // Proс. 3rd Int. Wheat Genet. Symp. Canberra, Austrf lia: Acad. Sci. Canberra, 1968. P. 1–36.
- Gale M.D., Youssefian S. Dwarfing genes in wheat I // Progress in Plant Breeding. London, 1985. P. 1–35. https://doi.org/10.1016/B978-0-407-00780-2.50005-9
- Пучков Ю.М., Беспалова Л.А., Волков А.Я., Ли Е.Н. Особенности селекции полукарликовых сортов озимой пшеницы // Селекция и генетика пшеницы. Cб. ст. к 80-летию со дня рождения акад. П.П. Лукьяненко. Краснодар: КНИИСХ, 1982. C. 20–28.
- Пучков Ю.М., Беспалова Л.А., Ли Е.Н. Селекция полукарликовых сортов озимой пшеницы на продуктивность и качество зерна // Селекция и генетика пшеницы. Краснодар: КНИИСХ, 1985. С. 3–10.
- Bazhenov M.S., Bespalova L.A., Kocheshkova A.A. et al. The association of grain yield and agronomical traits with genes of plant height, photoperiod sensitivity and plastid glutamine synthetase in winter bread wheat (Triticum aestivum L.) collection // Int. J. Mol. Sci. 2022. V. 23. № 19. https://doi.org/10.3390/ijms231911402
- Divashuk M., Bespalova L., Vasilyev A. et al. Reduced height genes and their importance in winter wheat cultivars grown in southern Russia // Euphytica. Netherlands J. Plant Breeding. 2013. V. 190. P. 137–144.
- Диващук М.Г., Васильев А.В., Беспалова Л.А., Карлов Г.И. Идентичность генов короткостебелъности Rht-11 и Rht-Ble // Генетика. 2012. Т. 48. № 7. С. 847–901.
- Bazhenov M., Litvinov D., Karlov G., Divashuk M. Evaluation of phosphate rock as the only source of phosphorus for the growth of tall and semi-dwarf durum wheat and rye plants using digital phenotyping // Peer J. 2023. V. 11. https://doi.org/10.7717/peerj.15972
- Chernook A.G., Kroupin P.Yu., Bespalova L.A. et al. Phenotypic effects of the dwarfing gene Rht-17 in spring durum wheat under two climatic conditions // Vavilov J. Gen. and Breeding. 2019. V. 23. № 7. P. 916–925. https://doi.org/10.18699/VJ19.567
- Distelfeld A., Li C., Dubcovsky J. Regulation of flowering in temperate cereals // Curr. Opinion in Plant Biol. 2009. V. 12. № 2. P. 178–184. https://doi.org/10.1016/j.pbi.2008.12.010
- Yan L., Helguera M., Kato K. et al. Allelic variation at the VRN-1 promoter region in polyploid wheat // Theor. and Applied Gen. 2004. V. 109. P. 1677–1686. https://doi.org/10.1007/s00122-004-1796-4
- Shitsukawa N., Ikari C., Mitsuya T. et al. Wheat SOC1 functions independently of WAP1/ VRN1, an integrator of vernalization and photoperiod f lowering promotion pathways // Physiologia Plantarum. 2007. V. 130. № 4. С. 627–636. https://doi.org/10.1111/j.1399-3054.2007.00927.x
- Miroshnichenko D., Timerbaev V., Klementyeva A. et al. CRISPR/Cas9-induced modification of the conservative promoter region of VRN-A1 alters the heading time of hexaploid bread wheat // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.1048695
- Beales J., Turner A., Griffiths S. et al. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.) // Theor. and Applied Gen. 2007. V. 115. P. 721–733. https://doi.org/10.1007/s00122-007-0603-4
- Brasier K.G., Tamang B.G., Carpenter N.R. et al. Photoperiod response gene Ppd-D1 affects nitrogen use efficiency in soft red winter wheat // Crop Science. 2018. V. 58. № 6. P. 2593–2606. https://doi.org/10.2135/cropsci2018.03.0207
- Worland A., Börner A., Korzun V. et al. The influence of photoperiod genes on the adaptability of European winter wheats // Euphytica. Netherlands J. Plant Breeding. 1998. V. 100. P. 385–394.
- Cane K., Eagles H., Laurie D. et al. Ppd-B1 and Ppd-D1 and their effects in southern Australian wheat // Crop and Pasture Sci. 2013. V. 64. № 2. P. 100–114. https://doi.org/10.1071/CP13086
- Kroupin P.Yu., Karlov G.I., Bespalova L.A. et al. Effects of Rht17 in combination with Vrn-B1 and Ppd-D1 alleles on agronomic traits in wheat in black earth and non-black earth regions // BMC Plant Biology. 2020. V. 20. № S1. P. 304. https://doi.org/10.1186/s12870-020-02514-0
- Lozada D.N., Carter A.H., Mason R.E. Unlocking the yield potential of wheat: Influence of major growth habit and adaptation genes // Crop Breeding, Genetics and Genomics. 2021. Т. 3. № 2. https://doi.org/10.20900/cbgg20210004
- Stelmakh A.F., Musicz V.N., Avsenin V.I. Effect of Vrn and Ppd genes on frost resistance in bread wheat // Цитология и генетика. 1998. V. 32. № 6. P. 59.
- Michel S., Löschenberger F., Hellinger J. et al. Improving and maintaining winter hardiness and frost tolerance in bread wheat by genomic selection // Front. Plant Sci. 2019. V. 10. https://doi.org/10.3389/fpls.2019.01195
- Würschum T., Longin C.F.H., Hahn V. et al. Copy number variations of CBF genes at the Fr-A2 locus are essential components of winter hardiness in wheat // The Plant J. 2017. V. 89. № 4. P. 764–773. https://doi.org/10.1111/tpj.13424
- Pearce S., Zhu J., Boldizsár Á. et al. Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat // Theor. and Applied Gen. 2013. V. 126. № 11. P. 2683–2697. https://doi.org/10.1007/s00122-013-2165-y
- Sieber A.-N., Longin C.F.H., Leiser W.L., Würschum T. Copy number variation of CBF-A14 at the Fr-A2 locus determines frost tolerance in winter durum wheat // Theor. and Applied Gen. 2016. Т. 129. P. 1087–1097. https://doi.org/10.1007/s00122-016-2685-3
- Belan I., Rosseeva L., Rosseev V. et al. Examination of adaptive and agronomic characters in lines of common wheat Omskaya 37 bearing translocations 1RS. 1BL and 7DL-7Ai // Vavilov J. Gen. and Breeding. 2014. V. 16. № 1. P. 178–186.
- Korobkova V.A., Bespalova L.A., Yanovsky A.S. et al. Permanent spreading of 1RS.1AL and 1RS.1BL translocations in modern wheat breeding // Plants. 2023. V. 12. № 6. https://doi.org/10.3390/plants12061205
- Crespo-Herrera L.A., Garkava-Gustavsson L., Åhman I. A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.) // Hereditas. 2017. V. 154. P. 1–9. https://doi.org/10.1186/s41065-017-0033-5
- Howell T., Hale I., Jankuloski L. et al. Mapping a region within the 1RS.1BL translocation in common wheat affecting grain yield and canopy water status // Theor. and Applied Gen. 2014. V. 127. P. 2695–2709. https://doi.org/10.1007/s00122-014-2408-6
- Villareal R.L., Bañuelos O., Mujeeb-Kazi A., Rajaram S. Agronomic performance of chromosomes 1B and T1BL. 1RS near-isolines in the spring bread wheat seri M82 // Euphytica. Netherlands J. Plant Breeding. 1998. V. 103. P. 195–202.
- Zarco-Hernandez J.A., Santiveri F., Michelena A., Peña R.J. Durum wheat (Triticum turgidum, L.) carrying the 1BL/1RS chromosomal translocation: Agronomic performance and quality characteristics under Mediterranean conditions // Europ. J. Agronomy. 2005. V. 22. № 1. P. 33–43. https://doi.org/10.1016/j.eja.2003.12.001
- Bazhenov M., Nazarova L., Mokhov T. et al. A molecular marker within the NLP3-B1 gene is associated with earliness in spring wheat (Triticum aestivum L.) // Agronomy. 2024. V. 14. № 12. https://doi.org/10.3390/agronomy14122888
- Hu M., Zhao X., Liu Q. et al. Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat // Plant Biotechnol. J. 2018. V. 16. № 11. P. 1858–1867. https://doi.org/10.1111/pbi.12921
- Li X.-P., Zhao X.-Q., He X. et al. Haplotype analysis of the genes encoding glutamine synthetase plastic isoforms and their association with nitrogen-use-and yield-related traits in bread wheat // New Phytologist. 2011. V. 189. № 2. P. 449–458.
- Zhang Y., Li D., Zhang D. et al. Analysis of the functions of Ta GW 2 homoeologs in wheat grain weight and protein content traits // Plant J. 2018. V. 94. № 5. P. 857–866. https://doi.org/10.1111/tpj.13903
- Su Z., Hao C., Wang L. et al. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.) // Theor. and Applied Gen. 2011. V. 122. P. 211–223. https://doi.org/10.1007/s00122-010-1437-z
- Murray M., Thompson W. Rapid isolation of high molecular weight plant DNA // Nucl. Ac. Res. 1980. V. 8. № 19. P. 4321–4326. https://doi.org/10.1093/nar/8.19.4321
- Pearce S., Saville R., Vaughan S.P. et al. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat // Plant Physiology. 2011. V. 157. № 4. P. 1820–1831. https://doi.org/10.1104/pp.111.183657
- Zhang W., Zhao J., He J. et al. Functional gene assessment of bread wheat: Breeding implications in Ningxia Province // BMC Plant Biology. 2021. V. 21. P. 1–14.
- Rasheed A., Wen W., Gao F. et al. Development and validation of KASP assays for genes underpinning key economic traits in wheat // Theor. and Applied Gen. 2016. V. 129. P. 1843–1860. https://doi.org/10.1007/s00122-016-2743-x
- Weng Y., Azhaguvel P., Devkota R., Rudd J. PCRbased markers for detection of different sources of 1AL.1RS and 1BL.1RS wheat–rye translocations in wheat background // Plant Breeding. 2007. V. 126. № 5. P. 482–486. https://doi.org/10.1111/j.1439-0523.2007.01331.x
Қосымша файлдар

