Wox Transcription Factors in the Development of Root «Irregular» Meristems
- Autores: Lutova L.A.1, Lebedeva M.A.1, Dodueva I.E.1, Tikhonovich I.A.1
-
Afiliações:
- Saint-Petersburg State University
- Edição: Volume 61, Nº 11 (2025)
- Páginas: 184–197
- Seção: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://bakhtiniada.ru/0016-6758/article/view/361197
- DOI: https://doi.org/10.7868/S303451032510194
- ID: 361197
Citar
Resumo
Palavras-chave
Sobre autores
L. Lutova
Saint-Petersburg State University
Email: la.lutova@gmail.com
Saint-Petersburg, 199034 Russia
M. Lebedeva
Saint-Petersburg State UniversitySaint-Petersburg, 199034 Russia
I. Dodueva
Saint-Petersburg State UniversitySaint-Petersburg, 199034 Russia
I. Tikhonovich
Saint-Petersburg State UniversitySaint-Petersburg, 199034 Russia
Bibliografia
- Kuznetsova K., Efremova E., Dodueva I. et al. Functional modules in the meristems: “Tinkering” in action // Plants. 2023. V. 12. № 20. https://doi.org/10.3390/plants12203661
- Tvorogova V.E., Krasnoperova E.Y., Potsenkovskaia E.A. et al. What does the WOX say? Review of regulators, targets, partners // Mol. Biol. (Mosk). 2021. V. 55. № 3. P. 362–391. https://doi.org/10.31857/S0026898421030174
- Whitewoods C.D. Evolution of CLE peptide signalling // Semin. Cell Dev. Biol. 2021. V. 109. P. 12–19. https://doi.org/10.1016/j.semcdb.2020.04.022
- Hirakawa Y. Evolution of meristem zonation by CLE gene duplication in land plants // Nat. Plants. 2022. V. 8. № 7. P. 735–740. https://doi.org/10.1038/s41477-022-01199-7
- Schlegel J., Denay G., Wink R. et al. Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways // eLife. 2021. V. 13. № 10. https://doi.org/10.7554/eLife.70934
- Pi L., Aichinger E., van der Graaff E. et al. Organizerderived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression // Dev. Cell. 2015. V. 33. № 5. P. 576–588. https://doi.org/10.1016/j.devcel.2015.04.024
- Geng Y., Zhou Y. HAM gene family and shoot meristem development // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.800332
- Chandler J.W., Werr W. Cytokinin-auxin crosstalk in cell type specification // Trends Plant Sci. 2015. V. 20. № 5. P. 291–300. https://doi.org/10.1016/j.tplants.2015.02.003
- Tanaka W., Ohmori Y., Ushijima T. et al. Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1 // The Plant Cell. 2015. V. 27. № 4. P. 1173–1184. https://doi.org/10.1105/tpc.15.00074.
- Nicolas A., Laufs P. Meristem initiation and de novo stem cell formation // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.891228
- Tsukaya H. The leaf meristem enigma: The relationship between the plate meristem and the marginal meristem // Plant Cell. 2021. V. 33. № 10. P. 3194–3206. https://doi.org/10.1093/plcell/koab190
- Додуева И.Е., Ганчева М.С., Лебедева М.А., Творогова В.Е. Латеральные меристемы высших растений: фитогормональный и генетический контроль // Физиол. растений. 2014. V. 61. № 5. P. 611. https://doi.org/10.7868/S0015330314050066
- Bishopp A., Help H., El-Showk S. et al. A Mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots // Curr. Biol. Elsevier. 2011. V. 21. № 11. P. 917–926. https://doi.org/10.1016/j.cub.2011.04.017
- Schoof H., Lenhard M., Haecker A. et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes // Cell. 2000. V. 100. № 6. P. 635–644. https://doi.org/10.1016/s0092-8674(00)80700-x
- Su Y.H., Zhou C., Li Y.J. et al. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem // PNAS USA. 2020. V. 117. № 36. P. 22561–22571. https://doi.org/10.1073/pnas.2015248117
- Shimotohno A., Heidstra R., Blilou I. et al. Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules // Genes Dev. 2018. V. 32. № 15–16. P. 1085–1100. https://doi.org/10.1101/gad.314096.118
- De Smet I. Lateral root initiation: One step at a time // New Phytol. 2012. V. 193. № 4. P. 867–873. https://doi.org/10.1111/j.1469-8137.2011.03996.x
- Dubrovsky J.G., Doerner P.W., Colón-Carmona A. et al. Pericycle cell proliferation and lateral root initiation inArabidopsis // Plant Physiol. 2000. V. 124. № 4. https://doi.org/10.1104/pp.124.4.1648
- Franssen H.J., Xiao T.T., Kulikova O. et al. Root developmental programs shape the Medicago truncatula nodule meristem // Development. 2015. V. 142. № 17. P. 2941–2950. https://doi.org/10.1242/dev.120774
- Heidstra R., Yang W.C., Yalcin Y. et al. Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in rhizobium-legume interaction // Development. 1997. V. 124. № 9. P. 1781–1787. https://doi.org/10.1242/dev.124.9.1781
- Baum S.F., Dubrovsky J.G., Rost T.L. Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots // Am J. Bot. 2002. V. 89. № 6. https://doi.org/10.3732/ajb.89.6.908
- Xiao W., Molina D., Wunderling A. et al. Pluripotent pericycle cells trigger different growth outputs by integrating developmental cues into distinct regulatory modules // Curr. Biol. 2020. V. 30. № 22. P. 4384–4398.e5. https://doi.org/10.1016/j.cub.2020.08.053
- Atta R., Laurens L., Boucheron-Dubuisson E. et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro // Plant J. 2009. V. 57. № 4. P. 626–644. https://doi.org/10.1111/j.1365-313X.2008.03715.x
- Parizot B., Laplaze L., Ricaud L. et al. Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation // Plant Physiol. 2008. V. 146. № 1. P. 140–148. https://doi.org/10.1104/pp.107.107870
- De Rybel B., Vassileva V., Parizot B. et al. A novel aux/ IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity // Curr. Biol. 2010. V. 20. № 19. P. 1697–1706. https://doi.org/10.1016/j.cub.2010.09.007
- Goh T., Joi S., Mimura T. et al. The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ ASL proteins // Development. 2012. V. 139. № 5. P. 883–893. https://doi.org/10.1242/dev.071928
- Ruzicka K., Simásková M., Duclercq J. et al. Cytokinin regulates root meristem activity via modulation of the polar auxin transport // PNAS USA. 2009. V. 106. № 11. P. 4284–4289. https://doi.org/10.1073/pnas.0900060106
- Stahl Y., Wink R.H., Ingram G.C., Simon R. A signaling module controlling the stem cell niche in Arabidopsis root meristems // Curr. Biol. 2009. V. 19. № 11. P. 909–914. https://doi.org/10.1016/j.cub.2009.03.060
- Gonzali S., Novi G., Loreti E. et al. A turanoseinsensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana // Plant J. 2005. V. 44. № 4. P. 633–645. https://doi.org/10.1111/j.1365-313X.2005.02555.x
- Hu X., Xu L. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and oganogenesis // Plant Physiol. 2016. V. 172. № 4. P. 2363–2373. https://doi.org/10.1104/pp.16.01067
- Aliaga Fandino A.C., Kim H., Rademaker J.D., Lee J.Y. Reprogramming of the cambium regulators during adventitious root development upon wounding of storage tap roots in radish (Raphanus sativus L.) // Biol. Open. 2019. V. 8. № 3. https://doi.org/10.1242/bio.039677
- Zhang T., Ge Y., Cai G. et al. WOX-ARF modules initiate different types of roots // Cell Rep. 2023. V. 42. № 8. https://doi.org/10.1016/j.celrep.2023.112966
- Fischer U., Kucukoglu M., Helariutta Y., Bhalerao R.P. The dynamics of cambial stem cell activity // Annu. Rev. Plant Biol. 2019. V. 70. P. 293–319. https://doi.org/10.1146/annurev-arplant-050718-100402
- Smetana O., Mäkilä R., Lyu M. et al. High levels of auxin signalling define the stem-cell organizer of the vascular cambium // Nature. 2019. V. 565. № 7740. P. 485–489. https://doi.org/10.1038/s41586-018-0837-0
- Zhang Y., Umeda M., Kakimoto T. Pericycle cell division competence underlies various developmental programs // Plant Biotechnol. (Tokyo). 2022. V. 39. № 1. P. 29–36. https://doi.org/10.5511/plantbiotechnology.21.1202a
- Sugimoto K., Jiao Y., Meyerowitz E.M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway // Dev. Cell. 2010. V. 18. № 3. P. 463–471.
- Tanaka H., Hashimoto N., Kawai S. et al. Auxin-induced WUSCHEL-RELATED HOMEOBOX13 mediates asymmetric activity of callus formation uponcutting // Plant Cell Physiol. 2023. V. 64. № 3. P. 305–316. https://doi.org/10.1093/pcp/pcac146
- Ogura N., Sasagawa Y., Ito T. et al. WUSCHELRELATED HOMEOBOX 13 suppresses de novo shoot regeneration via cell fate control of pluripotent callus // Sci. Adv. 2023. V. 9. № 27. https://doi.org/10.1126/sciadv.adg6983
- Su Y.H., Zhao X.Y., Liu Y.B. et al. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis // Plant J. 2009. V. 59. № 3. P. 448–460. https://doi.org/10.1111/j.1365-313X.2009.03880.x
- Krasnoperova E.Y., Tvorogova V.E., Smirnov K.V. et al. MtWOX2 and MtWOX9-1 effects on the embryogenic callus transcriptome in Medicago truncatula // Plants (Basel). 2023. V. 13. № 1. P. 102. https://doi.org/10.3390/plants13010102
- Zhang Y., Chen X., Wei G. et al. The WOX9-WUS modules are indispensable for the maintenance of stem cell homeostasis in Arabidopsis thaliana // Plant J. 2024. V. 120. № 3. P. 910–927. https://doi.org/10.1111/tpj.17024
- Dodueva I.E., Lebedeva M.A., Kuznetsova K.A. et al. Plant tumors: A hundred years of study // Planta. 2020. V. 251. № 4. P. 82. https://doi.org/10.1007/s00425-020-03375-5
- De Buck S., De Wilde C., Van Montagu M., Depicker A. Determination of the T-DNA transfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants // Mol. Plant Microb. Interact. 2000. V. 13. № 6. P. 658–665. https://doi.org/10.1094/MPMI.2000.13.6.658
- Guo X., Wang J., Gardner M. et al. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation // PLoS Pathog. 2017. V. 13. № 2. https://doi.org/10.1371/journal.ppat.1006142
- Dodueva I., Lebedeva M., Lutova L. Dialog between kingdoms: Enemies, allies and peptide phytohormones // Plants (Basel). 2021. V. 10. № 11. https://doi.org/10.3390/plants10112243.
- Miyashima S., Sebastian J., Lee J.Y., Helariutta Y. Stem cell function during plant vascular development // EMBO J. 2013. V. 32. № 2. P. 178–193. https://doi.org/10.1038/emboj.2012.301
- Osipova M.A., Mortier V., Demchenko K.N. et al. Wuschel-related homeobox5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation // Plant Physiol. 2012. V. 158. № 3. P. 1329–1341. https://doi.org/10.1104/pp.111.188078
- Lebedeva-Osipova M.A., Tvorogova V.E., Vinogradova A.P. et al. Initiation of spontaneous tumors i radish (Raphanus sativus): Cellular, molecular and physiological events // J. Plant Physiol. 2015. V. 173. P. 97–104. https://doi.org/10.1016/j.jplph.2014.07.030
- Libbenga K.R., van Iren F., Bogers R.J., SchraagLamers M.F. The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L // Planta. 1973. V. 114. № 1. P. 29–39. https://doi.org/10.1007/BF00390282
- Heckmann A.B., Sandal N., Bek A.S. et al. Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex // Mol. Plant Microbe Interact. 2011. V. 24. № 11. P. 1385–1395. https://doi.org/10.1094/MPMI-05-11-0142
- Matveeva T.V., Frolova N.V., Smets R. et al. Hormonal control of tumor formation in radish // J. Plant Growth Regul. 2004. V. 23. P. 37–43. https://doi.org/10.1007/s00344-004-0004-8.
- Tkachenko A., Dodueva I., Tvorogova V. et al. Transcriptomic analysis of radish (Raphanus sativus L.) spontaneous tumor // Plants (Basel). 2021. V. 10. № 5. https://doi.org/10.3390/plants10050919.
- Кузнецова К.А., Додуева И.Е., Лутова Л.А. Взаимодействие гомеодомена транскрипционного фактора WOX4 Raphanus sativus с промотором гена биосинтеза цитокининов LOG3 // Экол. генетика. 2024. Т. 22. № 1. С. 33–46. https://doi.org/10.17816/ecogen624893
- Kuznetsova X., Dodueva I., Afonin A. et al. Wholegenome sequencing and analysis of tumour-forming radish (Raphanus sativus L.) line // Int. J. Mol. Sci. 2024. V. 25. № 11. https://doi.org/10.3390/ijms25116236
- Ferguson B.J., Indrasumunar A., Hayashi S. et al. Molecular analysis of legume nodule development and autoregulation // J. Integr. Plant Biol. 2010. V. 52. № 1. P. 61–76. https://doi.org/10.1111/j.1744-7909.2010.00899.x
- Rahimlou S., Bahram M., Tedersoo L. Phylogenomics reveals the evolution of root nodulating alpha- and beta-proteobacteria (Rhizobia) // Microbiol. Res. 2021. V. 250. https://doi.org/10.1016/j.micres.2021.126788
- Op den Camp R., Streng A., De Mita S. et al. LysMtype mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia // Science. 2011. V. 331. № 6019. P. 909–912. https://doi.org/10.1126/science.1198181
- Doyle J.J. Phylogenetic perspectives on the origins of nodulation // Mol. Plant Microbe Interact. 2011. V. 24. № 11. P. 1289–1295. https://doi.org/10.1094/MPMI-05-11-0114
- Lebedeva M., Azarakhsh M., Sadikova D., Lutova L. At the root of nodule organogenesis: Conserved regulatory pathways recruited by Rhizobia // Plants (Basel). 2021. V. 10. № 12. https://doi.org/10.3390/plants10122654
- Liu J., Bisseling T. Evolution of NIN and NIN-like genes in relation to nodule symbiosis: 7 // Genes (Basel). 2020. V. 11. № 7. https://doi.org/10.3390/genes11070777
- Konishi M., Yanagisawa S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling // Nat. Commun. 2013. V. 4. P. 1617. https://doi.org/10.1038/ncomms2621
- Suzuki W., Konishi M., Yanagisawa S. The evolutionary events necessary for the emergence of symbiotic nitrogen fixation in legumes may involve a loss of nitrate responsiveness of the NIN transcription factor // Plant Signal. Behav. 2013. V. 8. № 10. https://doi.org/10.4161/psb.25975
- Liu C.-W., Breakspear A., Guan D. et al. NIN Acts as a network hub controlling a growth module required for rhizobial infection // Plant Physiol. 2019. V. 179. № 4. P. 1704–1722. https://doi.org/10.1104/pp.18.01572
- Xie F., Murray J.D., Kim J. et al. Legume pectate lyase required for root infection by rhizobia // PNAS USA. 2012. V. 109. № 2. P. 633–638. https://doi.org/10.1073/pnas.1113992109
- Soyano T., Kouchi H., Hirota A., Hayashi M. Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus // PLoS Genet. 2013. V. 9. № 3. https://doi.org/10.1371/journal.pgen.1003352
- Laporte P., Lepage A., Fournier J. et al. The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection // J. Exp. Bot. 2014. V. 65. № 2. P. 481–494. https://doi.org/10.1093/jxb/ert392
- Soyano T., Shimoda Y., Kawaguchi M. et al. A shared gene drives lateral root development and root nodule symbiosis pathways in Lotus // Science. 2019. V. 366. № 6468. P. 1021–1023. https://doi.org/10.1126/science.aax2153
- Schiessl K., Lilley J.L.S., Lee T. et al. NODULE INCEPTION recruits the lateral root developmental program for symbiotic nodule organogenesis in Medicago truncatula // Curr. Biol. 2019. V. 29. № 21. P. 3657–3668.e5. https://doi.org/10.1016/j.cub.2019.09.005
- Sarkar A.K., Luijten M., Miyashima S. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers // Nature. 2007. V. 446. № 7137. P. 811–814. https://doi.org/10.1038/nature05703
- Chen S.-K., Kurdyukov S., Kereszt A. et al. The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula // Planta. 2009. V. 230. № 4. P. 827–840. https://doi.org/10.1007/s00425-009-0988-1
- Aida M., Beis D., Heidstra R. et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche // Cell. 2004. V. 119. № 1. P. 109–120. https://doi.org/10.1016/j.cell.2004.09.018
- Du Y., Scheres B. PLETHORA transcription factors orchestrate de novo organ patterning during Arabidopsis lateral root outgrowth // PNAS USA. 2017. V. 114. № 44. https://doi.org/10.1073/pnas.1714410114
- Benfey P.N., Linstead P.J., Roberts K. et al. Root development in Arabidopsis: Four mutants with dramatically altered root morphogenesis // Development. 1993. V. 119. № 1. https://doi.org/10.1242/dev.119.Supplement.57
- Lucas M., Swarup R., Paponov I.A. et al. Short-root regulates primary, lateral, and adventitious root development in Arabidopsis // Plant Physiol. 2011. V. 155. № 1. P. 384–398. https://doi.org/10.1104/pp.110.165126
- Couzigou J.-M., Mondy S., Sahl L. et al. To be or noot to be: Evolutionary tinkering for symbiotic organ identity // Plant Signal. Behav. 2013. V. 8. № 8. https://doi.org/10.4161/psb.24969.
- Franssen H.J., Xiao T.T., Kulikova O. et al. Root developmental programs shape the Medicago truncatula nodule meristem // Development. 2015. V. 142. № 17. P. 2941–2950. https://doi.org/10.1242/dev.120774
- Magne K., George J., Berbel Tornero A. et al. Lotus japonicus NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development // Plant J. 2018. V. 94. № 5. P. 880–894. https://doi.org/10.1111/tpj.13905
- Magne K., Couzigou J.M., Schiessl K. et al. MtNODULE ROOT1 and MtNODULE ROOT2 are essential for indeterminate nodule identity // Plant Physiol. 2018. V. 178. № 1. P. 295–316. https://doi.org/10.1104/pp.18.00610
- Hepworth S.R., Pautot V.A. Beyond the divide: Boundaries for patterning and stem cell regulation in plants // Front. Plant Sci. 2015. V. 6. https://doi.org/10.3389/fpls.2015.01052
- Azarakhsh M., Lebedeva M.A. Lateral root versus nodule: The auxin-cytokinin interplay // J. Plant Growth Regul. 2023. V. 42. P. 6903–6919. https://doi.org/10.1007/s00344-023-10983-4
- Tirichine L., Sandal N., Madsen L.H. et al. A gainof-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis // Science. 2007. V. 315. № 5808. P. 104–107. https://doi.org/10.1126/science.1132397
- Gauthier-Coles C., White R.G., Mathesius U. Nodulating legumes are distinguished by a sensitivity to cytokinin in the root cortex leading to pseudonodule development // Front. Plant Sci. 2019. V. 9. https://doi.org/10.3389/fpls.2018.01901. eCollection 2018
- Dong W., Zhu Y., Chang H. et al. An SHR–SCR module specifies legume cortical cell fate to enable nodulation // Nature. 2021. V. 589. № 7843. https://doi.org/10.1038/s41586-020-3016-z
- Van Zeijl A., den Camp R.H.M.O., Deinum E.E. et al. Rhizobium lipo-chitooligosaccharide signaling triggers accumulation of cytokinins in Medicago truncatula roots // Mol. Plant. 2015. V. 8. № 8. P. 1213–1226. https://doi.org/10.1016/j.molp.2015.03.010
- Jardinaud M.-F., Boivin S., Rodde N. et al. A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by Nod factors in the Medicago truncatula root epidermis // Plant Physiol. 2016. V. 171. № 3. P. 2256–2276. https://doi.org/10.1104/pp.16.00711
- Reid D., Nadzieja M., Novák O. et al. Cytokinin biosynthesis promotes cortical cell responses during nodule development // Plant Physiol. 2017. V. 175. № 1. P. 361–375. https://doi.org/10.1104/pp.17.00832
- Azarakhsh M., Rumyantsev A.M., Lebedeva M.A., Lutova L.A. Cytokinin biosynthesis genes expressed during nodule organogenesis are directly regulated by the KNOX3 protein in Medicago truncatula // PloS One. 2020. V. 15. № 4. https://doi.org/10.1371/journal.pone.0232352
- Azarakhsh M., Kirienko A.N., Zhukov V.A. et al. KNOTTED1-LIKE HOMEOBOX 3: A new regulator of symbiotic nodule development // J. Exp. Bot. 2015. V. 66. № 22. P. 7181–7195. https://doi.org/10.1093/jxb/erv414
- Jasinski S., Piazza P., Craft J. et al. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities // Curr. Biol. 2005. V. 15. № 17. P. 1560–1565. https://doi.org/10.1016/j.cub.2005.07.023
- Yanai O., Shani E., Dolezal K. et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis // Curr. Biol. 2005. V. 15. № 17. P. 1566–1571. https://doi.org/10.1016/j.cub.2005.07.060
- Searle I.R., Men A.E., Laniya T.S. et al. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase // Science. 2003. V. 299. № 5603. P. 109–112. https://doi.org/10.1126/science.1077937
- Nishimura R., Hayashi M., Wu G.J. et al. HAR1 mediates systemic regulation of symbiotic organ development // Nature. 2002. V. 420. № 6914. P. 426–429. https://doi.org/10.1038/nature01231
- Schnabel E., Journet E.-P., de Carvalho-Niebel F. et al. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length // Plant Mol. Biol. 2005. V. 58. № 6. P. 809–822. https://doi.org/10.1007/s11103-005-8102-y
- Soyano T., Hirakawa H., Sato S. et al. NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production // PNAS USA. 2014. V. 111. № 40. P. 14607–14612. https://doi.org/10.1073/pnas.1412716111
- Laffont C., Ivanovici A., Gautrat P. et al. The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically // Nat. Commun. 2020. V. 11. № 1. P. 3167. https://doi.org/10.1038/s41467-020-16968-1
- Lebedeva M., Azarakhsh M., Yashenkova Y., Lutova L. Nitrate-induced CLE peptide systemically inhibits nodulation in Medicago truncatula // Plants. 2020. V. 9. № 11. https://doi.org/10.3390/plants9111456
- Lebedeva M.A., Dobychkina D.A., Yashenkova Ya.S. et al. Local and systemic targets of the MtCLE35-SUNN pathway in the roots of Medicago truncatula // J. Plant. Physiol. 2023. V. 281. https://doi.org/10.1016/j.jplph.2023.153922
- Lebedeva M.A., Dobychkina D.A., Bashtovenko K. et al. MtCLE35 mediates inhibition of rhizobiainduced signaling pathway and upregulation of defense-related genes in rhizobia-inoculated Medicago truncatula roots // J. Plant Growth Regul. 2024. V. 43. № 12. P. 4941–4956. https://doi.org/10.1007/s00344-024-11448-y
- Luo Z., Lin J.-S., Zhu Y. et al. NLP1 reciprocally regulates nitrate inhibition of nodulation through SUNN-CRA2 signaling in Medicago truncatula // Plant Commun. 2021. V. 2. № 3. https://doi.org/10.1016/j.xplc.2021.100183
- Zhong X., Wang J., Shi X. et al. Genetically optimizing soybean nodulation improves yield and protein content // Nat. Plants. 2024. V. 10. № 5. P. 736–742. https://doi.org/10.1038/s41477-024-01696-x
- Lebedeva M.A., Dobychkina D.A., Lutova L.A. CRISPR/Cas9-mediated knock-out of the MtCLE35 gene highlights its key role in the control of symbiotic nodule numbers under high-nitrate conditions // Int. J. Mol. Sci. 2023. V. 24. № 23. https://doi.org/10.3390/ijms242316816
Arquivos suplementares

