Wox Transcription Factors in the Development of Root «Irregular» Meristems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Homeodomain transcription factors (TF) play an important role in developmental control of higher eukaryotes, in particular, in the construction of the body plan. In plants, TFs of this group, especially representatives of the WOX family, are necessary for the formation and maintenance of meristems, the structures underlying postembryonic development and organogenesis. WOX TFs, together with the CLE peptides and their receptors that regulate their activity, constitute the WOX-CLAVATA system, a conservative regulatory module that ensures the functioning of various meristems. The formation, maintenance, and termination of meristems is a dynamic process that depends on many feedbacks that, in addition to the components of the WOX-CLAVATA system, involve TFs of other groups, as well as auxins and cytokinins. The review considers the dynamic principles of meristem regulation, as well as the genetic control of the formation and functioning of facultative/irregular secondary meristems and the role of homeodomain-containing TFs in this process.

Sobre autores

L. Lutova

Saint-Petersburg State University

Email: la.lutova@gmail.com
Saint-Petersburg, 199034 Russia

M. Lebedeva

Saint-Petersburg State University

Saint-Petersburg, 199034 Russia

I. Dodueva

Saint-Petersburg State University

Saint-Petersburg, 199034 Russia

I. Tikhonovich

Saint-Petersburg State University

Saint-Petersburg, 199034 Russia

Bibliografia

  1. Kuznetsova K., Efremova E., Dodueva I. et al. Functional modules in the meristems: “Tinkering” in action // Plants. 2023. V. 12. № 20. https://doi.org/10.3390/plants12203661
  2. Tvorogova V.E., Krasnoperova E.Y., Potsenkovskaia E.A. et al. What does the WOX say? Review of regulators, targets, partners // Mol. Biol. (Mosk). 2021. V. 55. № 3. P. 362–391. https://doi.org/10.31857/S0026898421030174
  3. Whitewoods C.D. Evolution of CLE peptide signalling // Semin. Cell Dev. Biol. 2021. V. 109. P. 12–19. https://doi.org/10.1016/j.semcdb.2020.04.022
  4. Hirakawa Y. Evolution of meristem zonation by CLE gene duplication in land plants // Nat. Plants. 2022. V. 8. № 7. P. 735–740. https://doi.org/10.1038/s41477-022-01199-7
  5. Schlegel J., Denay G., Wink R. et al. Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways // eLife. 2021. V. 13. № 10. https://doi.org/10.7554/eLife.70934
  6. Pi L., Aichinger E., van der Graaff E. et al. Organizerderived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression // Dev. Cell. 2015. V. 33. № 5. P. 576–588. https://doi.org/10.1016/j.devcel.2015.04.024
  7. Geng Y., Zhou Y. HAM gene family and shoot meristem development // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.800332
  8. Chandler J.W., Werr W. Cytokinin-auxin crosstalk in cell type specification // Trends Plant Sci. 2015. V. 20. № 5. P. 291–300. https://doi.org/10.1016/j.tplants.2015.02.003
  9. Tanaka W., Ohmori Y., Ushijima T. et al. Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1 // The Plant Cell. 2015. V. 27. № 4. P. 1173–1184. https://doi.org/10.1105/tpc.15.00074.
  10. Nicolas A., Laufs P. Meristem initiation and de novo stem cell formation // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.891228
  11. Tsukaya H. The leaf meristem enigma: The relationship between the plate meristem and the marginal meristem // Plant Cell. 2021. V. 33. № 10. P. 3194–3206. https://doi.org/10.1093/plcell/koab190
  12. Додуева И.Е., Ганчева М.С., Лебедева М.А., Творогова В.Е. Латеральные меристемы высших растений: фитогормональный и генетический контроль // Физиол. растений. 2014. V. 61. № 5. P. 611. https://doi.org/10.7868/S0015330314050066
  13. Bishopp A., Help H., El-Showk S. et al. A Mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots // Curr. Biol. Elsevier. 2011. V. 21. № 11. P. 917–926. https://doi.org/10.1016/j.cub.2011.04.017
  14. Schoof H., Lenhard M., Haecker A. et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes // Cell. 2000. V. 100. № 6. P. 635–644. https://doi.org/10.1016/s0092-8674(00)80700-x
  15. Su Y.H., Zhou C., Li Y.J. et al. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem // PNAS USA. 2020. V. 117. № 36. P. 22561–22571. https://doi.org/10.1073/pnas.2015248117
  16. Shimotohno A., Heidstra R., Blilou I. et al. Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules // Genes Dev. 2018. V. 32. № 15–16. P. 1085–1100. https://doi.org/10.1101/gad.314096.118
  17. De Smet I. Lateral root initiation: One step at a time // New Phytol. 2012. V. 193. № 4. P. 867–873. https://doi.org/10.1111/j.1469-8137.2011.03996.x
  18. Dubrovsky J.G., Doerner P.W., Colón-Carmona A. et al. Pericycle cell proliferation and lateral root initiation inArabidopsis // Plant Physiol. 2000. V. 124. № 4. https://doi.org/10.1104/pp.124.4.1648
  19. Franssen H.J., Xiao T.T., Kulikova O. et al. Root developmental programs shape the Medicago truncatula nodule meristem // Development. 2015. V. 142. № 17. P. 2941–2950. https://doi.org/10.1242/dev.120774
  20. Heidstra R., Yang W.C., Yalcin Y. et al. Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in rhizobium-legume interaction // Development. 1997. V. 124. № 9. P. 1781–1787. https://doi.org/10.1242/dev.124.9.1781
  21. Baum S.F., Dubrovsky J.G., Rost T.L. Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots // Am J. Bot. 2002. V. 89. № 6. https://doi.org/10.3732/ajb.89.6.908
  22. Xiao W., Molina D., Wunderling A. et al. Pluripotent pericycle cells trigger different growth outputs by integrating developmental cues into distinct regulatory modules // Curr. Biol. 2020. V. 30. № 22. P. 4384–4398.e5. https://doi.org/10.1016/j.cub.2020.08.053
  23. Atta R., Laurens L., Boucheron-Dubuisson E. et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro // Plant J. 2009. V. 57. № 4. P. 626–644. https://doi.org/10.1111/j.1365-313X.2008.03715.x
  24. Parizot B., Laplaze L., Ricaud L. et al. Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation // Plant Physiol. 2008. V. 146. № 1. P. 140–148. https://doi.org/10.1104/pp.107.107870
  25. De Rybel B., Vassileva V., Parizot B. et al. A novel aux/ IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity // Curr. Biol. 2010. V. 20. № 19. P. 1697–1706. https://doi.org/10.1016/j.cub.2010.09.007
  26. Goh T., Joi S., Mimura T. et al. The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ ASL proteins // Development. 2012. V. 139. № 5. P. 883–893. https://doi.org/10.1242/dev.071928
  27. Ruzicka K., Simásková M., Duclercq J. et al. Cytokinin regulates root meristem activity via modulation of the polar auxin transport // PNAS USA. 2009. V. 106. № 11. P. 4284–4289. https://doi.org/10.1073/pnas.0900060106
  28. Stahl Y., Wink R.H., Ingram G.C., Simon R. A signaling module controlling the stem cell niche in Arabidopsis root meristems // Curr. Biol. 2009. V. 19. № 11. P. 909–914. https://doi.org/10.1016/j.cub.2009.03.060
  29. Gonzali S., Novi G., Loreti E. et al. A turanoseinsensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana // Plant J. 2005. V. 44. № 4. P. 633–645. https://doi.org/10.1111/j.1365-313X.2005.02555.x
  30. Hu X., Xu L. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and oganogenesis // Plant Physiol. 2016. V. 172. № 4. P. 2363–2373. https://doi.org/10.1104/pp.16.01067
  31. Aliaga Fandino A.C., Kim H., Rademaker J.D., Lee J.Y. Reprogramming of the cambium regulators during adventitious root development upon wounding of storage tap roots in radish (Raphanus sativus L.) // Biol. Open. 2019. V. 8. № 3. https://doi.org/10.1242/bio.039677
  32. Zhang T., Ge Y., Cai G. et al. WOX-ARF modules initiate different types of roots // Cell Rep. 2023. V. 42. № 8. https://doi.org/10.1016/j.celrep.2023.112966
  33. Fischer U., Kucukoglu M., Helariutta Y., Bhalerao R.P. The dynamics of cambial stem cell activity // Annu. Rev. Plant Biol. 2019. V. 70. P. 293–319. https://doi.org/10.1146/annurev-arplant-050718-100402
  34. Smetana O., Mäkilä R., Lyu M. et al. High levels of auxin signalling define the stem-cell organizer of the vascular cambium // Nature. 2019. V. 565. № 7740. P. 485–489. https://doi.org/10.1038/s41586-018-0837-0
  35. Zhang Y., Umeda M., Kakimoto T. Pericycle cell division competence underlies various developmental programs // Plant Biotechnol. (Tokyo). 2022. V. 39. № 1. P. 29–36. https://doi.org/10.5511/plantbiotechnology.21.1202a
  36. Sugimoto K., Jiao Y., Meyerowitz E.M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway // Dev. Cell. 2010. V. 18. № 3. P. 463–471.
  37. Tanaka H., Hashimoto N., Kawai S. et al. Auxin-induced WUSCHEL-RELATED HOMEOBOX13 mediates asymmetric activity of callus formation uponcutting // Plant Cell Physiol. 2023. V. 64. № 3. P. 305–316. https://doi.org/10.1093/pcp/pcac146
  38. Ogura N., Sasagawa Y., Ito T. et al. WUSCHELRELATED HOMEOBOX 13 suppresses de novo shoot regeneration via cell fate control of pluripotent callus // Sci. Adv. 2023. V. 9. № 27. https://doi.org/10.1126/sciadv.adg6983
  39. Su Y.H., Zhao X.Y., Liu Y.B. et al. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis // Plant J. 2009. V. 59. № 3. P. 448–460. https://doi.org/10.1111/j.1365-313X.2009.03880.x
  40. Krasnoperova E.Y., Tvorogova V.E., Smirnov K.V. et al. MtWOX2 and MtWOX9-1 effects on the embryogenic callus transcriptome in Medicago truncatula // Plants (Basel). 2023. V. 13. № 1. P. 102. https://doi.org/10.3390/plants13010102
  41. Zhang Y., Chen X., Wei G. et al. The WOX9-WUS modules are indispensable for the maintenance of stem cell homeostasis in Arabidopsis thaliana // Plant J. 2024. V. 120. № 3. P. 910–927. https://doi.org/10.1111/tpj.17024
  42. Dodueva I.E., Lebedeva M.A., Kuznetsova K.A. et al. Plant tumors: A hundred years of study // Planta. 2020. V. 251. № 4. P. 82. https://doi.org/10.1007/s00425-020-03375-5
  43. De Buck S., De Wilde C., Van Montagu M., Depicker A. Determination of the T-DNA transfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants // Mol. Plant Microb. Interact. 2000. V. 13. № 6. P. 658–665. https://doi.org/10.1094/MPMI.2000.13.6.658
  44. Guo X., Wang J., Gardner M. et al. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation // PLoS Pathog. 2017. V. 13. № 2. https://doi.org/10.1371/journal.ppat.1006142
  45. Dodueva I., Lebedeva M., Lutova L. Dialog between kingdoms: Enemies, allies and peptide phytohormones // Plants (Basel). 2021. V. 10. № 11. https://doi.org/10.3390/plants10112243.
  46. Miyashima S., Sebastian J., Lee J.Y., Helariutta Y. Stem cell function during plant vascular development // EMBO J. 2013. V. 32. № 2. P. 178–193. https://doi.org/10.1038/emboj.2012.301
  47. Osipova M.A., Mortier V., Demchenko K.N. et al. Wuschel-related homeobox5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation // Plant Physiol. 2012. V. 158. № 3. P. 1329–1341. https://doi.org/10.1104/pp.111.188078
  48. Lebedeva-Osipova M.A., Tvorogova V.E., Vinogradova A.P. et al. Initiation of spontaneous tumors i radish (Raphanus sativus): Cellular, molecular and physiological events // J. Plant Physiol. 2015. V. 173. P. 97–104. https://doi.org/10.1016/j.jplph.2014.07.030
  49. Libbenga K.R., van Iren F., Bogers R.J., SchraagLamers M.F. The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L // Planta. 1973. V. 114. № 1. P. 29–39. https://doi.org/10.1007/BF00390282
  50. Heckmann A.B., Sandal N., Bek A.S. et al. Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex // Mol. Plant Microbe Interact. 2011. V. 24. № 11. P. 1385–1395. https://doi.org/10.1094/MPMI-05-11-0142
  51. Matveeva T.V., Frolova N.V., Smets R. et al. Hormonal control of tumor formation in radish // J. Plant Growth Regul. 2004. V. 23. P. 37–43. https://doi.org/10.1007/s00344-004-0004-8.
  52. Tkachenko A., Dodueva I., Tvorogova V. et al. Transcriptomic analysis of radish (Raphanus sativus L.) spontaneous tumor // Plants (Basel). 2021. V. 10. № 5. https://doi.org/10.3390/plants10050919.
  53. Кузнецова К.А., Додуева И.Е., Лутова Л.А. Взаимодействие гомеодомена транскрипционного фактора WOX4 Raphanus sativus с промотором гена биосинтеза цитокининов LOG3 // Экол. генетика. 2024. Т. 22. № 1. С. 33–46. https://doi.org/10.17816/ecogen624893
  54. Kuznetsova X., Dodueva I., Afonin A. et al. Wholegenome sequencing and analysis of tumour-forming radish (Raphanus sativus L.) line // Int. J. Mol. Sci. 2024. V. 25. № 11. https://doi.org/10.3390/ijms25116236
  55. Ferguson B.J., Indrasumunar A., Hayashi S. et al. Molecular analysis of legume nodule development and autoregulation // J. Integr. Plant Biol. 2010. V. 52. № 1. P. 61–76. https://doi.org/10.1111/j.1744-7909.2010.00899.x
  56. Rahimlou S., Bahram M., Tedersoo L. Phylogenomics reveals the evolution of root nodulating alpha- and beta-proteobacteria (Rhizobia) // Microbiol. Res. 2021. V. 250. https://doi.org/10.1016/j.micres.2021.126788
  57. Op den Camp R., Streng A., De Mita S. et al. LysMtype mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia // Science. 2011. V. 331. № 6019. P. 909–912. https://doi.org/10.1126/science.1198181
  58. Doyle J.J. Phylogenetic perspectives on the origins of nodulation // Mol. Plant Microbe Interact. 2011. V. 24. № 11. P. 1289–1295. https://doi.org/10.1094/MPMI-05-11-0114
  59. Lebedeva M., Azarakhsh M., Sadikova D., Lutova L. At the root of nodule organogenesis: Conserved regulatory pathways recruited by Rhizobia // Plants (Basel). 2021. V. 10. № 12. https://doi.org/10.3390/plants10122654
  60. Liu J., Bisseling T. Evolution of NIN and NIN-like genes in relation to nodule symbiosis: 7 // Genes (Basel). 2020. V. 11. № 7. https://doi.org/10.3390/genes11070777
  61. Konishi M., Yanagisawa S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling // Nat. Commun. 2013. V. 4. P. 1617. https://doi.org/10.1038/ncomms2621
  62. Suzuki W., Konishi M., Yanagisawa S. The evolutionary events necessary for the emergence of symbiotic nitrogen fixation in legumes may involve a loss of nitrate responsiveness of the NIN transcription factor // Plant Signal. Behav. 2013. V. 8. № 10. https://doi.org/10.4161/psb.25975
  63. Liu C.-W., Breakspear A., Guan D. et al. NIN Acts as a network hub controlling a growth module required for rhizobial infection // Plant Physiol. 2019. V. 179. № 4. P. 1704–1722. https://doi.org/10.1104/pp.18.01572
  64. Xie F., Murray J.D., Kim J. et al. Legume pectate lyase required for root infection by rhizobia // PNAS USA. 2012. V. 109. № 2. P. 633–638. https://doi.org/10.1073/pnas.1113992109
  65. Soyano T., Kouchi H., Hirota A., Hayashi M. Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus // PLoS Genet. 2013. V. 9. № 3. https://doi.org/10.1371/journal.pgen.1003352
  66. Laporte P., Lepage A., Fournier J. et al. The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection // J. Exp. Bot. 2014. V. 65. № 2. P. 481–494. https://doi.org/10.1093/jxb/ert392
  67. Soyano T., Shimoda Y., Kawaguchi M. et al. A shared gene drives lateral root development and root nodule symbiosis pathways in Lotus // Science. 2019. V. 366. № 6468. P. 1021–1023. https://doi.org/10.1126/science.aax2153
  68. Schiessl K., Lilley J.L.S., Lee T. et al. NODULE INCEPTION recruits the lateral root developmental program for symbiotic nodule organogenesis in Medicago truncatula // Curr. Biol. 2019. V. 29. № 21. P. 3657–3668.e5. https://doi.org/10.1016/j.cub.2019.09.005
  69. Sarkar A.K., Luijten M., Miyashima S. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers // Nature. 2007. V. 446. № 7137. P. 811–814. https://doi.org/10.1038/nature05703
  70. Chen S.-K., Kurdyukov S., Kereszt A. et al. The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula // Planta. 2009. V. 230. № 4. P. 827–840. https://doi.org/10.1007/s00425-009-0988-1
  71. Aida M., Beis D., Heidstra R. et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche // Cell. 2004. V. 119. № 1. P. 109–120. https://doi.org/10.1016/j.cell.2004.09.018
  72. Du Y., Scheres B. PLETHORA transcription factors orchestrate de novo organ patterning during Arabidopsis lateral root outgrowth // PNAS USA. 2017. V. 114. № 44. https://doi.org/10.1073/pnas.1714410114
  73. Benfey P.N., Linstead P.J., Roberts K. et al. Root development in Arabidopsis: Four mutants with dramatically altered root morphogenesis // Development. 1993. V. 119. № 1. https://doi.org/10.1242/dev.119.Supplement.57
  74. Lucas M., Swarup R., Paponov I.A. et al. Short-root regulates primary, lateral, and adventitious root development in Arabidopsis // Plant Physiol. 2011. V. 155. № 1. P. 384–398. https://doi.org/10.1104/pp.110.165126
  75. Couzigou J.-M., Mondy S., Sahl L. et al. To be or noot to be: Evolutionary tinkering for symbiotic organ identity // Plant Signal. Behav. 2013. V. 8. № 8. https://doi.org/10.4161/psb.24969.
  76. Franssen H.J., Xiao T.T., Kulikova O. et al. Root developmental programs shape the Medicago truncatula nodule meristem // Development. 2015. V. 142. № 17. P. 2941–2950. https://doi.org/10.1242/dev.120774
  77. Magne K., George J., Berbel Tornero A. et al. Lotus japonicus NOOT-BOP-COCH-LIKE1 is essential for nodule, nectary, leaf and flower development // Plant J. 2018. V. 94. № 5. P. 880–894. https://doi.org/10.1111/tpj.13905
  78. Magne K., Couzigou J.M., Schiessl K. et al. MtNODULE ROOT1 and MtNODULE ROOT2 are essential for indeterminate nodule identity // Plant Physiol. 2018. V. 178. № 1. P. 295–316. https://doi.org/10.1104/pp.18.00610
  79. Hepworth S.R., Pautot V.A. Beyond the divide: Boundaries for patterning and stem cell regulation in plants // Front. Plant Sci. 2015. V. 6. https://doi.org/10.3389/fpls.2015.01052
  80. Azarakhsh M., Lebedeva M.A. Lateral root versus nodule: The auxin-cytokinin interplay // J. Plant Growth Regul. 2023. V. 42. P. 6903–6919. https://doi.org/10.1007/s00344-023-10983-4
  81. Tirichine L., Sandal N., Madsen L.H. et al. A gainof-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis // Science. 2007. V. 315. № 5808. P. 104–107. https://doi.org/10.1126/science.1132397
  82. Gauthier-Coles C., White R.G., Mathesius U. Nodulating legumes are distinguished by a sensitivity to cytokinin in the root cortex leading to pseudonodule development // Front. Plant Sci. 2019. V. 9. https://doi.org/10.3389/fpls.2018.01901. eCollection 2018
  83. Dong W., Zhu Y., Chang H. et al. An SHR–SCR module specifies legume cortical cell fate to enable nodulation // Nature. 2021. V. 589. № 7843. https://doi.org/10.1038/s41586-020-3016-z
  84. Van Zeijl A., den Camp R.H.M.O., Deinum E.E. et al. Rhizobium lipo-chitooligosaccharide signaling triggers accumulation of cytokinins in Medicago truncatula roots // Mol. Plant. 2015. V. 8. № 8. P. 1213–1226. https://doi.org/10.1016/j.molp.2015.03.010
  85. Jardinaud M.-F., Boivin S., Rodde N. et al. A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by Nod factors in the Medicago truncatula root epidermis // Plant Physiol. 2016. V. 171. № 3. P. 2256–2276. https://doi.org/10.1104/pp.16.00711
  86. Reid D., Nadzieja M., Novák O. et al. Cytokinin biosynthesis promotes cortical cell responses during nodule development // Plant Physiol. 2017. V. 175. № 1. P. 361–375. https://doi.org/10.1104/pp.17.00832
  87. Azarakhsh M., Rumyantsev A.M., Lebedeva M.A., Lutova L.A. Cytokinin biosynthesis genes expressed during nodule organogenesis are directly regulated by the KNOX3 protein in Medicago truncatula // PloS One. 2020. V. 15. № 4. https://doi.org/10.1371/journal.pone.0232352
  88. Azarakhsh M., Kirienko A.N., Zhukov V.A. et al. KNOTTED1-LIKE HOMEOBOX 3: A new regulator of symbiotic nodule development // J. Exp. Bot. 2015. V. 66. № 22. P. 7181–7195. https://doi.org/10.1093/jxb/erv414
  89. Jasinski S., Piazza P., Craft J. et al. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities // Curr. Biol. 2005. V. 15. № 17. P. 1560–1565. https://doi.org/10.1016/j.cub.2005.07.023
  90. Yanai O., Shani E., Dolezal K. et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis // Curr. Biol. 2005. V. 15. № 17. P. 1566–1571. https://doi.org/10.1016/j.cub.2005.07.060
  91. Searle I.R., Men A.E., Laniya T.S. et al. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase // Science. 2003. V. 299. № 5603. P. 109–112. https://doi.org/10.1126/science.1077937
  92. Nishimura R., Hayashi M., Wu G.J. et al. HAR1 mediates systemic regulation of symbiotic organ development // Nature. 2002. V. 420. № 6914. P. 426–429. https://doi.org/10.1038/nature01231
  93. Schnabel E., Journet E.-P., de Carvalho-Niebel F. et al. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length // Plant Mol. Biol. 2005. V. 58. № 6. P. 809–822. https://doi.org/10.1007/s11103-005-8102-y
  94. Soyano T., Hirakawa H., Sato S. et al. NODULE INCEPTION creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production // PNAS USA. 2014. V. 111. № 40. P. 14607–14612. https://doi.org/10.1073/pnas.1412716111
  95. Laffont C., Ivanovici A., Gautrat P. et al. The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically // Nat. Commun. 2020. V. 11. № 1. P. 3167. https://doi.org/10.1038/s41467-020-16968-1
  96. Lebedeva M., Azarakhsh M., Yashenkova Y., Lutova L. Nitrate-induced CLE peptide systemically inhibits nodulation in Medicago truncatula // Plants. 2020. V. 9. № 11. https://doi.org/10.3390/plants9111456
  97. Lebedeva M.A., Dobychkina D.A., Yashenkova Ya.S. et al. Local and systemic targets of the MtCLE35-SUNN pathway in the roots of Medicago truncatula // J. Plant. Physiol. 2023. V. 281. https://doi.org/10.1016/j.jplph.2023.153922
  98. Lebedeva M.A., Dobychkina D.A., Bashtovenko K. et al. MtCLE35 mediates inhibition of rhizobiainduced signaling pathway and upregulation of defense-related genes in rhizobia-inoculated Medicago truncatula roots // J. Plant Growth Regul. 2024. V. 43. № 12. P. 4941–4956. https://doi.org/10.1007/s00344-024-11448-y
  99. Luo Z., Lin J.-S., Zhu Y. et al. NLP1 reciprocally regulates nitrate inhibition of nodulation through SUNN-CRA2 signaling in Medicago truncatula // Plant Commun. 2021. V. 2. № 3. https://doi.org/10.1016/j.xplc.2021.100183
  100. Zhong X., Wang J., Shi X. et al. Genetically optimizing soybean nodulation improves yield and protein content // Nat. Plants. 2024. V. 10. № 5. P. 736–742. https://doi.org/10.1038/s41477-024-01696-x
  101. Lebedeva M.A., Dobychkina D.A., Lutova L.A. CRISPR/Cas9-mediated knock-out of the MtCLE35 gene highlights its key role in the control of symbiotic nodule numbers under high-nitrate conditions // Int. J. Mol. Sci. 2023. V. 24. № 23. https://doi.org/10.3390/ijms242316816

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».