DNA Repair in Ensuring Genome Stability and Human Health
- Autores: Rechkunova N.I.1, Lavrik O.I.1
-
Afiliações:
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
- Edição: Volume 61, Nº 11 (2025)
- Páginas: 119–127
- Seção: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://bakhtiniada.ru/0016-6758/article/view/361192
- DOI: https://doi.org/10.7868/S303451032510146
- ID: 361192
Citar
Resumo
Palavras-chave
Sobre autores
N. Rechkunova
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of SciencesNovosibirsk, 630090 Russia
O. Lavrik
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Email: lavrik@niboch.nsc.ru
Novosibirsk, 630090 Russia
Bibliografia
- Friedberg E.C. DNA damage and repair // Nature. 2003. V. 421. № 6921. P. 436–440. https://doi.org/10.1038/nature01408
- Niedernhofer L.J., Gurkar A.U., Wang Y. et al. Nuclear genomic instability and aging // Annu. Rev. Biochem. 2018. V. 87. P. 295–322. https://doi.org/10.1146/annurev-biochem-062917-012239
- Alemasova E.E., Lavrik O.I. Poly(ADP-ribosyl)ation by PARP1: Reaction mechanism and regulatory proteins // Nucl. Acids Res. 2019. V. 47. № 8. P. 3811–3827. https://doi.org/10.1093/nar/gkz120
- Schreiber V., Illuzzi G., Heberlé E., Dantzer F. From poly(ADP-ribose) discovery to PARP inhibitors in cancer therapy // Bull. Cancer. 2015. V. 102. № 10. P. 863–873. https://doi.org/10.1016/j.bulcan.2015.07.012
- Curtin N.J., Szabo C. Poly(ADP-ribose)polymerase inhibition: Past, present and future // Nat. Rev. Drug Discov. 2020. V. 19. № 10. P. 711–736. https://doi.org/10.1038/s41573-020-0076-6
- Ходырева С.Н., Лаврик О.И. Поли(ADP-рибоза)полимераза 1 – ключевой регулятор репарации ДНК // Мол. биология. 2016. Т. 50. № 4. С. 655–673.
- Amé J.C., Rolli V., Schreiber V. et al. PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose)polymerase // J. Biol. Chem. 1999. V. 274. № 25. P. 17860–17868. https://doi.org/10.1074/jbc.274.25.17860
- Yélamos J., Schreiber V., Dantzer F. Toward specific functions of poly(ADP-ribose)polymerase-2 // Trends Mol. Med. 2008. V. 14. № 4. P. 169–178. https://doi.org/10.1016/j.molmed.2008.02.003
- De Vos M., Schreiber V., Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of the art // Biochem. Pharmacol. 2012. V. 84. № 2. P. 137–146. https://doi.org/10.1016/j.bcp.2012.03.018
- Lavrik O.I. PARPs’ impact on base excision DNA repair // DNA Repair (Amst.). 2020. V. 93. https://doi.org/10.1016/j.dnarep.2020.102911
- Речкунова Н.И., Мальцева Е.А., Лаврик О.И. Посттрансляционные модификации белков эксцизионной репарации нуклеотидов и их роль в регуляции процесса // Биохимия. 2019. Т. 84. № 9. С. 1244–1258.
- Kutuzov M.M., Belousova E.A., Ilina E.S., Lavrik O.I. Impact of PARP1, PARP2 & PARP3 on the base excision repair of nucleosomal DNA // Adv. Exp. Med. Biol. 2020. V. 1241. P. 47–57. https://doi.org/10.1007/978-3-030-41283-8_4
- Sukhanova M.V., Abrakhi S., Josi V. et al. Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)action using high-resolution AFM imaging // Nucl. Acids Res. 2016. V. 44. № 6. P. e60. https://doi.org/10.1093/nar/gkv1476
- Sukhanova M.V., Hamon L., Kutuzov M.M. et al. A single-molecule atomic force microscopy study of PARP1 and PARP2 recognition of base excision repair DNA intermediates // J. Mol. Biol. 2019. V. 431. № 15. P. 2655–2673. https://doi.org/10.1016/j.jmb.2019.05.028
- Vågbø C.B., Slupphaug G. RNA in DNA repair // DNA Repair (Amst.). 2020. V. 95. https://doi.org/10.1016/j.dnarep.2020.102927
- Singatulina A.S., Hamon L., Sukhanova M.V. et al. PARP-1 activation directs FUS to DNA damage sites to form PARG-reversible compartments enriched in damaged DNA // Cell Rep. 2019. V. 27. № 6. P. 1809–1821. https://doi.org/10.1016/j.celrep.2019.04.031
- Алемасова Е.Э., Лаврик О.И. На стыке трех нуклеиновых кислот: роль РНК-связывающих белков и поли(ADP-рибозы) в репарации ДНК // Acta Naturea. 2017. Т. 9. № 2. С. 4–17.
- Alemasova E.E., Lavrik O.I. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates // Nucl. Acids Res. 2022. V. 50. № 19. P. 10817–10838. https://doi.org/10.1093/nar/gkac866
- Altmeyer M., Neelsen K.J., Teloni F. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose) // Nat. Commun. 2015. V. 6. P. 8088. https://doi.org/10.1038/ncomms9088
- Dasovich M., Leung A.K.L. PARPs and ADP-ribosylation: Deciphering the complexity with molecular tools // Mol. Cell. 2023. V. 83. № 10. P. 1552–1572. https://doi.org/10.1016/j.molcel.2023.04.009
- Mamonova E.M., Clément M.J., Sukhanova M.V. et al. FUS RRM regulates poly(ADP-ribose) levels after transcriptional arrest and PARP-1 activation on DNA damage // Cell Rep. 2023. V. 42. № 10. https://doi.org/10.1016/j.celrep.2023.113199
- Patel A., Lee H.O., Jawerth L. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation // Cell. 2015. V. 162. № 5. P. 1066–1077. https://doi.org/10.1016/j.cell.2015.07.047
- Jungmichel S., Rosenthal F., Altmeyer M. et al. Proteome-wide identification of poly(ADP-Ribosyl)action targets in different genotoxic stress responses // Mol. Cell. 2013. V. 52. № 2. P. 272–285. https://doi.org/10.1016/j.molcel.2013.08.026
- Rulten S.L., Rotheray A., Green R.L. et al. PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage // Nucl. Acids Res. 2014. V. 42. № 1. P. 307–314. https://doi.org/10.1093/nar/gkt835
- Sukhanova M.V., Singatulina A.S., Pastré D., Lavrik O.I. Fused in sarcoma (FUS) in DNA repair: Tango with poly(ADP-ribose) polymerase 1 and compartmentalization of damaged DNA // Int. J. Mol. Sci. 2020. V. 21. № 19. https://doi.org/10.3390/ijms21197020
- Gibbs-Seymour I., Fontana P., Rack J.G.M., Ahel I. HPF1/Cdorf27 is a PARP-1-interacting protein that regulates PARP-1 ADP-ribosylation activity // Mol. Cell. 2016. V. 62. № 3. P. 432–442. https://doi.org/10.1016/j.molcel.2016.03.008
- Suskiewicz M.J., Zobel F., Ogden T.E.H. et al. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation // Nature. 2020. V. 579. № 7800. P. 598–602. https://doi.org/10.1038/s41586-020-2013-6
- Bonfiglio J.J., Fontana P., Zhang Q. et al. Serine ADP-ribosylation depends on HPF1 // Mol. Cell. 2017. V. 65. № 5. P. 932–940. https://doi.org/10.1016/j.molcel.2017.01.003
- Palazzo L., Leidecker O., Prokhorova E. et al. Serine is the major residue for ADP-ribosylation upon DNA damage // Elife. 2018. V. 7. https://doi.org/10.7554/eLife.34334
- Leidecker O., Bonfiglio J.J., Colby T. et al. Serine is a new target residue for endogenous ADP-ribosylation on histones // Nat. Chem. Biol. 2016. V. 12. № 12. P. 998–1000. https://doi.org/10.1038/nchembio.2180
- Sun F.H., Zhao P., Zhang N. et al. HPF1 remodels the active site of PARP1 to enable the serine ADP-ribosylation of histones // Nat. Commun. 2021. V. 12. № 1. P. 1028. https://doi.org/10.1038/s41467-021-21302-4
- Kurgina T.A., Moor N.A., Kutuzov M.M. et al. Dual function of HPF1 in the modulation of PARP1 and PARP2 activities // Commun. Biol. 2021. V. 4. № 1. P. 1259. https://doi.org/10.1038/s42003-021-02780-0
- Langelier M.F., Billur R., Sverzhinsky A. et al. HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications // Nat. Commun. 2021. V. 12. № 1. P. 6675. https://doi.org/10.1038/s41467-021-27043-8
- Rudolph J., Roberts G., Mathurajan U.M., Luger K. HPF1 and nucleosomes mediate a dramatic switch in activity of PARP1 from polymerase to hydrolase // Elife. 2021. V. 10. https://doi.org/10.7554/eLife.65773
- Prokhorova E., Zobel F., Smith R. et al. Serine-linked PARP1 auto-modification controls PARP inhibitor response // Nat. Commun. 2021. V. 12. № 1. P. 4055. https://doi.org/10.1038/s41467-021-24361-9
- Gaullier G., Roberts G., Muthurajan U.M. et al. Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1 // PLoS One. 2020. V. 15. № 11. https://doi.org/10.1371/journal.pone.0240932
- Rudolph J., Roberts G., Luger K. Histone Parylation factor 1 contributes to the inhibition of PARP1 by cancer drugs // Nat. Commun. 2021. V. 12. № 1. P. 736. https://doi.org/10.1038/s41467-021-20998-8
- Kurgina T.A., Moor N.A., Kutuzov M.M., Lavrik O.I. The HPF1-dependent histone PARylation catalyzed by PARP2 is specifically stimulated by an incised AP site-containing BER DNA intermediate // DNA Repair (Amst.). 2022. V. 120. https://doi.org/10.1016/j.dnarep.2022.103423
- Longarini E.J., Dauben H., Locatelli C. et al. Modular antibodies reveal DNA damage-induced mono-ADP-ribosylation as a second wave of PARP1 signaling // Mol. Cell. 2023. V. 83. № 10. P. 1743–1760. https://doi.org/10.1016/j.molcel.2023.03.027
- Lin X., Jiang W., Rudolph J. et al. PARP inhibitors trap PARP2 and alter the mode of recruitment of PARP2 at DNA damage sites // Nucl. Acids Res. 2022. V. 50. № 7. P. 3958–3973. https://doi.org/10.1093/nar/gkac188
- Flippot R., Patrikidou A., Aldea M. et al. PARP inhibition, a new therapeutic avenue in patients with prostate cancer // Drugs. 2022. V. 82. № 7. P. 719–733. https://doi.org/10.1007/s40265-022-01703-5
- Sim H.W., Galanis E., Khasraw M. PARP inhibitors in glioma: A review of therapeutic opportunities // Cancer (Basel). 2022. V. 14. № 4. https://doi.org/10.3390/cancers14041003
- Sonnenblick A., de Azambuja E., Azim H.A., Piccart M. An update on PARP inhibitors – moving to the adjuvant setting // Nat. Rev. Clin. Oncol. 2015. V. 12. № 1. P. 27–41. https://doi.org/10.1038/nrclinone.2014.163
Arquivos suplementares

