Plants, RNA, and New Genetic Technologies

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A brief overview of the development of RNA technologies in the field of biological control and their application in agricultural practice, data on RNA regulators in ecosystems, and prospects for the development of genetic tools based on the use of RNA is given.

Негізгі сөздер

Авторлар туралы

A. Kochetov

Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University; Novosibirsk State Agricultural University

Email: ak@biomet.nsc.ru
Novosibirsk, Russia

Әдебиет тізімі

  1. Huang G., Allen R., Davis E.L. et al. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential rootknot nematode parasitism gene // PNAS USA. 2006. V. 103. P. 14302–14306. https://doi.org/10.1073/pnas.0604698103
  2. Nowara D., Gay A., Lacomme C. et al. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis // The Plant Cell. 2010. V. 22. P. 3130–3141. https://doi.org/10.1105/tpc.110.077040
  3. Govindarajulu M., Epstein L., Wroblewski T., Michelmore R.W. Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce // Plant Biotechnol. J. 2015. V. 13. P. 875–883. https://doi.org/10.1111/pbi.12307
  4. Jahan S.N., Asman A.K., Corcoran P. et al. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans // J. Exp. Bot. 2015. V. 66. P. 2785–2794. https://doi.org/10.1093/jxb/erv094
  5. Abdellatef E., Will T., Koch A. et al. Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid Sitobion avenae // Plant Biotechnol. J. 2015. V. 13. P. 849–857. https://doi.org/10.1111/pbi.12322
  6. Zhang J., Khan S.A., Hasse C. et al. Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids // Science. 2015. V. 347. P. 991–994. https://doi.org/10.1126/science.1261680
  7. Alakonya A., Kumar R., Koenig D. et al. Interspecific RNA interference of SHOOT MERISTEMLESS-like disrupts Cuscuta pentagona plant parasitism // Plant Cell. 2012. V. 7. P. 3153–3166. https://doi.org/10.1105/tpc.112.099994
  8. Mo Q., Lv B., Sun Y. et al. Screening and production of dsRNA molecules for protecting Cucumis sativus against Cucumber mosaic virus through foliar application // Plant Biotechnol. Rep. 2022. V. 16. № 4. P. 409–418. https://doi.org/10.1007/s11816-022-00750-4
  9. Konakalla N.C., Bag S., Deraniyagala A.S. et al. Induction of plant resistance in tobacco (Nicotiana tabacum) against tomato spotted wilt orthotospovirus through foliar application of dsRNA // Viruses. 2021. V. 13. № 4. P. 662. https://doi.org/10.3390/v1304 0662
  10. Degnan R.M., McTaggart A.R., Shuey L.S. et al. Exogenous double-stranded RNA inhibits the infection physiology of rust fungi to reduce symptoms in planta // Mol. Plant Pathol. 2023. V. 24. № 3. P. 191–207. https://doi.org/10.1111/mpp.13286
  11. Nerva L., Sandrini M., Gambino G., Chitarra W. Double-stranded rnas (Dsrnas) as a sustainable tool against gray mold (Botrytis cinerea) in grapevine: Effectiveness of different application methods in an open-air environment // Biomolecules. 2020. V. 10. № 2. https://doi.org/10.3390/biom10020200
  12. Lucena-Leandro V.S., Abreu E.F.A., Vidal L.A. et al. Current scenario of exogenously induced RNAi for lepidopteran agricultural pest control: From dsRNA design to topical application // Int. J. Mol. Sci. 2022. V. 23. № 24. https://doi.org/10.3390/ijms232415836
  13. Leelesh R.S., Rieske L.K. Oral ingestion of bacterially expressed dsRNA // InSects. 2020. V. 11. № 440. P. 1–10. https://doi.org/10.3390/insects110 70440
  14. Hashiro S., Chikami Y., Kawaguchi H. et al. Efficient production of long double-stranded RNAs applicable to agricultural pest control by Corynebacterium glutamicum equipped with coliphage T7-expression system // Appl. Microbiol. Biotechnol. 2021. V. 105. № 12. P. 4987–5000. https://doi.org/10.1007/ s00253- 021- 11324-9
  15. Werner B.T., Koch A., Šečić E. et al. Fusarium graminearum DICER-like- dependent sRNAs are required for the suppression of host immune genes and full virulence // PLoS One. 2021. V. 16. https://doi.org/10.1371/journal.pone.0252365
  16. Zhang W., Wang R., Li Y. et al. Engineered pine endophytic fungus expressing double-stranded RNA targeting lethal genes to control the plant-parasitic nematode Bursaphelenchus xylophilus // Phytopathology. 2025. V. 115. № 3. P. 224–233. https://doi.org/10.1094/PHYTO-07-24-0203-R
  17. Kochetov A.V. The alien replicon: Artificial genetic constructs to direct the synthesis of transmissible self-replicating RNAs // BioEssays. 2014. V. 36. P. 1204–1212. https://doi.org/10.1002/bies.201400111
  18. Summerell B.A. Resolving Fusarium: current status of the genus // Ann. Rev. Phytopathol. 2019. V. 57. P. 323–339. https://doi.org/10.1146/annurev-phyto-082718-100204
  19. Dean R., van Kan J.A.L., Pretorius Z.A. et al. The top 10 fungal pathogens in molecular plant pathology // Mol. Plant Pathol. 2012. V. 13. P. 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  20. Chen Y., Kistler H.C., Ma Z. Annual review of phytopathology Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management // Ann. Rev. Phytopathol. 2019. V. 57. P. 15–39. https://doi.org/10.1146/annurev-phyto-082718-100318
  21. Alahmad S., Simpfendorfer S., Bentley A.R., Hickey L.T. Crown rot of wheat in Australia: Fusarium pseudograminearum taxonomy, population biology and disease management // Austral. Plant Pathol. 2018. V. 47. P. 285–299. https://doi.org/10.1007/s13313-018-0554-z
  22. O'Donnell K., McCormick S.P., Busman M. et al. Marasas et al. 1984 “Toxigenic Fusarium species: identity and Mycotoxicology” revisited // Mycologia. 2018. V. 110. P. 1058–1080. https://doi.org/10.1080/00275514.2018.1519773
  23. De Chaves M.A., Reginatto P., da Costa B.S. et al. Fungicide resistance in Fusarium graminearum species complex // Curr. Microbiol. 2022. V. 79. P. 62. https://doi.org/10.1007/s00284-021-02759-4
  24. Yu X., Killiny N. RNA interference-mediated control of Asian citrus psyllid, the vector of the huanglongbing bacterial pathogen // Tropical Plant Pathology. 2020. V. 45. № 3. P. 298–305. https://doi.org/10.1007/s40858-020-00356-7
  25. Šečić E., Kogel K.H. Requirements for fungal uptake of dsRNA and gene silencing in RNAi-based crop protection strategies // Curr. Opin Biotechnol. 2021. V. 70. P. 136–142. https://doi.org/10.1016/j.copbio.2021.04.001
  26. Liu C., Kogel K.H., Ladera-Carmona M. Harnessing RNA interference for the control of Fusarium species: A critical review // Mol. Plant Pathol. 2024. V. 25. № 10. https://doi.org/10.1111/mpp.70011
  27. Koch A., Kumar N., Weber L. et al. Host-induced gene silencing of cytochrome P450 lanosterol C14alpha-demethylase-encoding genes confers strong resistance to Fusarium species // PNAS USA. 2013. V. 110. P. 19324–19329. https://doi.org/10.1073/pnas.1306373110
  28. Koch A., Biedenkopf D., Furch A. et al. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery // PLoS Pathogens. 2016. V. 12. https://doi.org/10.1371/journal.ppat.1005901
  29. Koch A., Stein E., Kogel K.H. RNA-based disease control as a complementary measure to fight Fusarium fungi through silencing of the azole target cytochrome P450 lanosterol C-14 α-demethylase // Europ. J. Plant Pathol. 2018. V. 152. P. 1003–1010. https://doi.org/10.1007/s10658-018-1518-4
  30. Koch A., Höfle L., Werner B.T. et al. SIGS vs HIGS: A study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and non-host plants // Mol. Plant Pathol. 2019. V. 20. P. 1636–1644. https://doi.org/10.1111/mpp.12866
  31. Yang P., Yi S.Y., Nian J.N. et al. Application of double-strand RNAs targeting chitin synthase, glucan synthase, and protein kinase reduces Fusarium graminearum spreading in wheat // Front. Microbiol. 2021. V. 12. https://doi.org/10.3389/fmicb.2021.660976
  32. Wu L.Y., Chen F.R., Wang P.W. et al. Application of dsRNA of FgPMA1 for disease control on Fusarium graminearum // J. Integr. Plant Biol. 2023. https://doi.org/10.1016/j.jia. 2023.11.046
  33. Song X.S., Gu K.X., Duan X.X. et al. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing // Mol. Plant Pathol. 2018. V. 19. P. 2543–2560. https://doi.org/10.1111/mpp.12728
  34. Gu K.X., Song X.S., Xiao X.M. et al. A β-2-tubulin dsRNA derived from Fusarium asiaticum confers plant resistance to multiple phytopathogens and reduces fungicide resistance // Pesticide Biochem. and Physiol. 2019. V. 153. P. 36–46. https://doi.org/10.1016/j.pestbp.2018.10.005
  35. Gao D., Abdullah S., Baldwin T. et al. Agrobacterium-mediated transfer of the Fusarium graminearum Tri6 gene into barley using mature seed-derived shoot tips as explants // Plant Cell Reports. 2024. V. 43. P. 40. https://doi.org/10.1007/s00299-023-03129-z
  36. Hao G., McCormick S., Vaughan M.M. Effects of double-stranded RNAs targeting Fusarium graminearum TRI6 on Fusarium head blight and mycotoxins // Phytopathology. 2021. V. 111. P. 2080–2087. https://doi.org/10.1094/PHYTO-10-20-0468-R
  37. Hoang B.T.L., Fletcher S.J., Brosnan C.A. et al. RNAi as a foliar spray: Efficiency and challenges to field applications // Int. J. Mol. Sci. 2022. V. 23. P. 6639. https://doi.org/10.3390/ijms23126639
  38. Höfle L., Biedenkopf D., Werner B.T. et al. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes // RNA Biology. 2020. V. 17. P. 463–473. https://doi.org/10.1080/15476286.2019.1700033
  39. He F., Zhang R., Zhao J. et al. Host-induced silencing of Fusarium graminearum genes enhances the resistance of Brachypodium distachyon to Fusarium head blight // Front. Plant Sci. 2019. V. 10. P. 1362. https://doi.org/10.3389/fpls.2019.01362
  40. Shuai J., Tu Q., Zhang Y. et al. Silence of five F. graminearum genes in wheat host confers resistance to Fusarium head blight // J. Integrative Plant Biol. 2024. https://doi.org/10.1016/j.chemosphere.2024.142678
  41. Chen W., Kastner C., Nowara D. et al. Host-induced silencing of Fusarium culmorum genes protects wheat from infection // J. Exp. Bot. 2016. V. 67. № 17. P. 4979–4991. https://doi.org/10.1093/jxb/erw263
  42. Pérez C.E.B., Cabral G.B., Aragão F.J.L. Host-induced gene silencing for engineering resistance to Fusarium in soybean // Plant Pathol. 2021. V. 70. P. 417–425. https://doi.org/10.1007/s12033-019-00215-0
  43. Chauhan S., Rajam M.V. Host RNAi-mediated silencing of Fusarium oxysporum f. sp. lycopersici specific-fasciclin-like protein genes provides improved resistance to Fusarium wilt in Solanum lycopersicum // Planta. 2024. V. 259. P. 79. https://doi.org/10.1007/s00425-024-04360-y
  44. Tetorya M., Rajam M.V. RNAi-mediated silencing of PEX6 and GAS1 genes of Fusarium oxysporum f. sp. lycopersici confers resistance against Fusarium wilt in tomato // 3 Biotech. 2021. V. 11. № 10. P. 443. https://doi.org/10.1007/s13205-021-02973-8
  45. Song X.S., Gu K.X., Duan X.X. et al. A myosin5 dsRNA that reduces the fungicide resistance and pathogenicity of Fusarium asiaticum // Pestic. Biochem. Physiol. 2018. V. 150. P. 1–9. https://doi.org/10.1016/j.pestbp.2018.07.004
  46. Fan J., Urban M., Parker J.E. et al. Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function // New Phytologist. 2013. V. 198. P. 821–835. https://doi.org/10.1111/nph.12193
  47. Harris L.J., Balcerzak M., Johnston A. et al. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize // Fungal Biology. 2016. V. 120. P. 111–123. https://doi.org/10.1016/j.funbio.2015.10.010
  48. Mosa M.A., Youssef K. Topical delivery of host induced RNAi silencing by layered double hydroxide nanosheets: An efficient tool to decipher pathogenicity gene function of Fusarium crown and root rot in tomato // Physiol. and Mol. Plant Pathol. 2021. V. 115. https://doi.org/10.1016/j.pmpp.2021.101684
  49. Liu W., Wang X., Zhou A. et al. Trends and emerging hotspots in RNAi-based arthropod pest control: A comprehensive bibliometric analysis // J. Insect. Physiol. 2025. V. 161. https://doi.org/10.1016/j.jinsphys.2025.104754
  50. Mao Y.B., Cai W.J., Wang J.W. et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol // Nat. Biotechnol. 2007. V. 25. № 11. P. 1307–1313. https://doi.org/10.1038/nbt1352
  51. Yogindran S., Rajam M.V. Host-derived artificial miRNA-mediated silencing of ecdysone receptor gene provides enhanced resistance to Helicoverpa armigera in tomato // Genomics. 2021. V. 113. № 1. Pt. 2. P. 736–747. https://doi.org/10.1016/j.ygeno.2020.10.004
  52. Jaiwal A., Rajam M.V. Host-induced RNA interference confers insect resistance in Tobacco by targeting chitin synthase gene of Helicoverpa armigera // SSRN Electronic J. 2022. https://doi.org/10.2139/ssrn.4264787
  53. Bally J., McIntyre G.J., Doran R.L. et al. In-plant protection against Helicoverpa armigera by production of long hpRNA in chloroplasts // Front. Plant Sci. 2016. V. 7. P. 1453. https://doi.org/10.3389/fpls.2016.01453
  54. Biedenkopf D., Will T., Knauer T. et al. Systemic spreading of exogenous applied RNA biopesticides in the crop plant Hordeum vulgare // ExRNA 2. 2020. V. 2. https://doi.org/10.1186/s41544-020-00052-3
  55. Luo J., Liang S., Li J. et al. A transgenic strategy for controlling plant bugs (Adelphocoris suturalis) through expression of double-stranded RNA homologous to fatty acyl-coenzyme A reductase in cotton // New Phytologist. 2017. V. 215. P. 1173–1185. https://doi.org/10.1111/nph.14636
  56. Thakur N., Upadhyay S.K., Verma P.C. et al. Enhanced whitef ly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene // PLoS One 2014. V. 9. https://doi.org/10.1371/journal.pone.0087235
  57. Lomate P.R., Bonning B.C. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula // Sci. Reports. 2016. V. 6. https://doi.org/10.1038/srep27587
  58. Marcianò D., Ricciardi V., Marone Fassolo E. et al. RNAi of a putative grapevine susceptibility gene as a possible downy mildew control strategy // Front. Plant Sci. 2021. V. 28. № 12. https://doi.org/10.3389/fpls.2021.667319
  59. Di Lelio I., Barra E., Coppola M. et al. Transgenic plants expressing immunosuppressive dsRNA improve entomopathogen efficacy against Spodoptera littoralis larvae // J. Pest. Sci. 2022. V. 95. P. 1413–1428. https://doi.org/10.1007/s10340-021-01467-z
  60. Bachman P., Fischer J., Song Z. et al. Environmental fate and dissipation of applied dsRNA in soil, aquatic systems, and plants // Front. Plant Sci. 2020. V. 11. https://doi.org/10.3389/fpls.2020.00021
  61. Moorlach B.W., Sede A.R., Hermann K.M. et al. Interpolyelectrolyte complexes of in vivo produced dsRNA with chitosan and alginate for enhanced plant protection against tobacco mosaic virus // Int. J. Biol. Macromol. 2025. V. 27. № 306. Pt. 2. https://doi.org/10.1016/j.ijbiomac.2025.141579
  62. Qiao H., Jiang Q., Zhao J. et al. Nano-delivery platform with strong protection and efficient delivery: Preparation of self-assembled RNA pesticide with dual RNAi targets against Apolygus lucorum // J. Nanobiotechnology. 2025. V. 23. № 1. P. 93. https://doi.org/10.1186/s12951-025-03155-x
  63. Jiang Y., Zong S., Wang X. et al. pH-responsive nanoparticles for oral delivery of RNAi for sustained protection against Spodoptera exigua // Int. J. Biol. Macromol. 2025. V. 4. https://doi.org/10.1016/j.ijbiomac.2025.141763
  64. Yong J., Xu W., Wu M. et al. Lysozyme-coated nanoparticles for active uptake and delivery of synthetic RNA and plasmid-encoded genes in plants // Nat. Plants. 2025. V. 11. № 1. P. 131–144. https://doi.org/10.1038/s41477-024-01882-x
  65. Nityagovsky N.N., Kiselev K.V., Suprun A.R., Dubrovina A.S. Exogenous dsRNA induces RNA interference of a chalcone synthase gene in Arabidopsis thaliana // Int. J. Mol. Sci. 2022. V. 23. № 10. https://doi.org/10.3390/ijms23105325
  66. Ji Q., Kowalski K.P., Golenberg E.M. et al. Cell-penetrating peptide-mediated delivery of gene-silencing nucleic acids to the invasive common reed Phragmites australis via foliar application // Plants (Basel). 2025. V. 14. № 3. https://doi.org/10.3390/plants14030458
  67. Panozzo S., Milani A., Bordignon S. et al. RNAi technology development for weed control: All smoke and no fire? // Pest. Manag. Sci. 2025. V. 21. https://doi.org/10.1002/ps.8729
  68. Wang M., Thomas N., Jin H. Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection // Curr. Opin. Plant Biol. 2017. V. 38. P. 133–141. https://doi.org/10.1016/j.pbi.2017.05.003
  69. Saxena S., Yogindran S., Arya M. et al. RNAi-Mediated control of lepidopteran pests of important crop plants // Moths and Caterpillars / Ed. Shields V.D.C. Intech Open, 2021. P. 27. https://doi.org/10.5772/intechopen.96429
  70. Khajuria C., Ivashuta S., Wiggins E. et al. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte // PLoS One. 2018. V. 13. https://doi.org/10.1371/journal.pone.0197059
  71. Liao C., Zhang M., Zhang J. Characterization and potential mechanism of resistance to double-stranded RNA in willow leaf beetle, Plagiodera versicolora // J. Pest Sci. 2024. V. 97. P. 2217–2226. https://doi.org/10.21203/rs.3.rs-3250534/v1
  72. Narva K., Toprak U., Alyokhin A. et al. Insecticide resistance management scenarios differ for RNA-based sprays and traits // Insect. Mol. Biol. 2025. V. 21. https://doi.org/10.1111/imb.12986
  73. Rodrigues T.B., Mishra S.K., Sridharan K. et al. First sprayable double-stranded RNA-based biopesticide product targets proteasome subunit Beta Type-5 in Colorado potato beetle (Leptinotarsa decemlineata) // Front. Plant Sci. 2021. V. 12. https://doi.org/10.3389/fpls.2021.728652
  74. Yan J., Nauen R., Reitz S. et al. The new kid on the block in insect pest management: Sprayable RNAi goes commercial // Sci. China Life Sci. 2024. V. 67. P. 1766–1768. https://doi.org/10.1007/s11427-024-2612-1
  75. Feng X., Shi Y., Sun Z. et al. Control of Fusarium graminearum infection in wheat by dsRNA-based spray-induced gene silencing // J. Agric. Food Chem. 2025. V. 3. https://doi.org/10.1021/acs.jafc.4c12665
  76. Schiemann J., Dietz-Pfeilstetter A., Hartung F. et al. Risk assessment and regulation of plants modified by modern biotechniques: Current status and future challenges // Ann. Rev. Plant Biol. 2019. V. 70. P. 699–726. https://doi.org/10.1146/annurev-arplant-050718-100025
  77. Kleter G.A. Food safety assessment of crops engineered with RNA-interference and other methods to modulate expression of endogenous and plant pest genes // Pest Management Sci. 2020. V. 76. P. 3333–3339. https://doi.org/10.1002/ps.5957
  78. EFSA Panel on Genetically Modified Organisms (GMO), Naegeli H., Birch A.N., Casacuberta J. et al. Scientific opinion on the assessment of genetically modified maize MON 87411 for food and feed uses, import and processing, under regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2015-124) // EFSA J. 2018. V. 16. P. 5310. https://doi.org/10.2903/j.efsa.2017.4744
  79. EFSA Panel on Genetically Modified Organisms (GMO), Naegeli H., Bresson J.L., Dalmay T. et al. Scientific opinion on the assessment of genetically modified maize MON 87427 × MON 89034 × MIR162 × × MON 87411 and subcombinations, for food and feed uses, under regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2017-144) // EFSA J. 2019. V. 17. https://doi.org/10.2903/j.efsa.2019.5848
  80. Petrick J.S., Frierdich G.E., Carleton S.M. et al. Corn rootworm-active RNA DvSnf7: Repeat dose oral toxicology assessment in support of human and mammalian safety // Regulat. Toxicol. and Pharmacol. 2016. V. 81. P. 57–68. https://doi.org/10.1016/j.yrtph.2016.07.009
  81. Zhang H., Chen J., Gao J. et al. New insights into transmission pathways and possible off-target effects of insecticidal dsRNA released by treated plants // Pestic. Biochem. Physiol. 2022. V. 188. https://doi.org/10.1016/j.pestbp.2022.105281
  82. Tan J., Sheng C.W., Karthi S. et al. New insights into expanding the insecticidal spectrum of dsRNA mediated by the high sequence identity between dsRNA and nontarget mRNA // J. Agric. Food Chem. 2025. V. 73. № 8. P. 4605–4616. https://doi.org/10.1021/acs.jafc.4c12803
  83. Khan F., Esmaeily M., Jin G. et al. A sprayable long hairpin dsRNA formulated with layered double hydroxide against the western f lower thrips, Frankliniella occidentalis: Control efficacy in a greenhouse and inf luence on beneficial insects // Pestic. Biochem. Physiol. 2025. V. 209. https://doi.org/10.1016/j.pestbp.2025.106331
  84. Xu M., Li G., Guo Y. et al. A fungal microRNA-like RNA subverts host immunity and facilitates pathogen infection by silencing two host receptor-like kinase genes // New Phytol. 2022. V. 233. № 6. P. 2503–2519. https://doi.org/10.1111/nph.17945
  85. Kwon S., Rupp O., Brachmann A. et al. mRNA inventory of extracellular vesicles from Ustilago maydis // J. Fungi. 2021. V. 7. https://doi.org/10.3390/jof7070562
  86. Doehlemann G., Wahl R., Horst R.J. et al. Reprogramming a maize plant: Transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis // Plant J. 2008. V. 56. P. 181–195. https://doi.org/10.1111/j.1365-313X.2008.03590.x
  87. Laurie J.D., Linning R., Bakkeren G. Hallmarks of RNA silencing are found in the smut fungus Ustilago hordei but not in its close relative Ustilago maydis // Curr. Genet. 2008. V. 53. P. 49–58. https://doi.org/10.1007/s00294-007-0165-7
  88. Zhang B.S., Li Y.C., Guo H.S., Zhao J.H. Verticillium dahlia secretes small RNA to target host MIR157d and retard plant floral transition during infection // Front. Plant Sci. 2022. V. 13. https://doi.org/10.3389/fpls.2022.847086
  89. Zhang T., Zhao Y.L., Zhao J.H. et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen // Nat. Plants 2016. V. 2. https://doi.org/10.1038/nplants.2016.153
  90. Weiberg A., Wang M., Lin F.M. et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways // Science. 2013. V. 342. P. 118–123. https://doi.org/10.1126/science.1239705
  91. Cai Q., Qiao L., Wang M. et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes // Science. 2018. V. 360. № 6393. P. 1126–1129. https://doi.org/10.1126/science.aar4142
  92. Zhu K., Liu M., Fu Z. et al. Plant microRNAs in larval food regulate honeybee caste development // PLoS Genet. 2017. V. 13. № 8. https://doi.org/10.1371/journal.pgen.1006946
  93. Hou Y., Zhai Y., Feng L. et al. A Phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility // Cell Host Microbe. 2019. V. 25. № 1. P. 153–165. https://doi.org/10.1016/j.chom.2018.11.007
  94. Johnson N.R., dePamphilis C.W., Axtell M.J. Compensatory sequence variation between trans-species small RNAs and their target sites // eLife. 2019. V. 8. https://doi.org/10.7554/eLife.49750
  95. Borniego M.L., Singla-Rastogi M., Baldrich P. et al. Diverse plant RNAs coat Arabidopsis leaves and are distinct from apoplastic RNAs // PNAS USA. 2025. V. 122. № 1. https://doi.org/10.1073/pnas.2409090121
  96. Guo X.Y., Li Y., Fan J. et al. Host-induced gene silencing of MoAP1 confers broad-spectrum resistance to Magnaporthe oryzae // Front. Plant Sci. 2019. V. 10. https://doi.org/10.3389/fpls.2019.00433
  97. Panwar V., McCallum B., Bakkeren G. Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus // Plant Mol. Biol. 2013. V. 81. P. 595–608. https://doi.org/10.1007/s11103-013-0022-7
  98. Silvestri A., Turina M., Fiorilli V. et al. Different genetic sources contribute to the small RNA population in the Arbuscular mycorrhizal fungus Gigaspora margarita // Front. Microbiol. 2020. V. 11. https://doi.org/10.3389/fmicb.2020.00395
  99. Liu J., Lu Y., Chen X. et al. The silent conversation: How small RNAs shape plant-microbe relationships // Int. J. Mol. Sci. 2025. V. 26. № 6. https://doi.org/10.3390/ijms26062631
  100. Gu H., Lian B., Yuan Y. et al. A 5′ tRNA-Ala-derived small RNA regulates anti-fungal defense in plants // Sci. China Life Sci. 2022. V. 65. P. 1–15. https://doi.org/10.1007/s11427-021-2017-1
  101. Nechooshtan G., Yunusov D., Chang K. et al. Processing by RNase 1 forms tRNA halves and distinct Y RNA fragments in the extracellular environment // Nucl. Acids Res. 2020. V. 48. P. 8035–8049. https://doi.org/10.1093/nar/gkaa526
  102. He X., Li F., Bor B. et al. Human tRNA-derived small RNAs modulate host-oral microbial interactions // J. Dent. Res. 2018. V. 97. № 11. P. 1236–1243. https://doi.org/10.1177/0022034518770605
  103. He B., Cai Q., Qiao L. et al. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles // Nat. Plants. 2021. V. 7. P. 342–352. https://doi.org/10.1038/s41477-021-00863-8
  104. Ren B., Wang X., Duan J., Ma J. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation // Science. 2019. V. 365. P. 919–922. https://doi.org/10.1126/science.aav8907
  105. Van Niel G., Carter D.R.F., Clayton A. et al. Challenges and directions in studying cell–cell communication by extracellular vesicles // Nat. Rev. Mol. Cell Biol. 2022. V. 23. P. 369–382. https://doi.org/10.1038/s41580-022-00460-3
  106. Trifonova E.A., Sapotsky M.V., Komarova M.L. et al. Protection of transgenic tobacco plants expressing bovine pancreatic ribonuclease against Tobacco mosaic virus // Plant Cell Reports. 2007. V. 26. P. 1121–1126. https://doi.org/10.1007/s00299-006-0298-z
  107. Sugawara T., Trifonova E.A., Kochetov A.V., Kanayama Y. Expression of extracellular ribonuclease gene increases resistance to Cucumber mosaic virus in tobacco // BMC Plant Biol. 2016. V. 16. P. 246. https://doi.org/10.1186/s12870-016-0928-8
  108. Филипенко Е.А., Кочетов А.В., Kanayama Y. и др. PR-белки с рибонуклеазной активностью и устойчивость растений к патогенным грибам // Вавил. журн. генетики и селекции. 2013. Т. 17. С. 326–334. https://doi.org/10.1134/S2079059713060026
  109. Fich E.A., Fisher J., Zamir D., Rose J.K.C. Transpiration from tomato fruit occurs primarily via trichome-associated transcuticular polar pores // Plant Physiol. 2020. V. 184. P. 1840–1852. https://doi.org/10.1104/pp.20.01105
  110. Jang S., Kim D., Lee S., Ryu C.M. Plant-induced bacterial gene silencing: A novel control method for bacterial wilt disease // Front. Plant Sci. 2024. V. 15. https://doi.org/10.3389/fpls.2024.1411837
  111. Teng Y., Ren Y., Sayed M. et al. Plant-derived exosomal microRNAs shape the gut microbiota // Cell Host Microbe. 2018. V. 24. P. 637–652. https://doi.org/10.1016/j.chom.2018.10.001
  112. Zand Karimi H., Innes R.W. Molecular mechanisms underlying host-induced gene silencing // Plant Cell. 2022. V. 34. № 9. P. 3183–3199. https://doi.org/10.1093/plcell/koac165
  113. Baldrich P., Rutter B.D., Karimi H.Z. et al. Plant extracellular vesicles contain diverse small RNA species and are enriched in 10-to 17-nucleotide “tiny” RNAs // Plant Cell. 2019. V. 31. P. 315–324. https://doi.org/10.1105/tpc.18.00872
  114. Ravet A., Zervudacki J., Singla-Rastogi M. et al. Vesicular and non-vesicular extracellular small RNAs direct gene silencing in a plant-interacting bacterium // Nat. Commun. 2025. V. 16. № 1. P. 3533. https://doi.org/10.1038/s41467-025-57908-1

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».