Genetic basis of abdominal fat accumulation in chickens
- Авторлар: Dysin A.P.1, Peglivanyan G.K.1, Reinbach N.R.1, Gabova A.V.1, Azovtseva A.I.1, Ryabova A.E.1, Polteva E.A.1, Larkina T.A.1
-
Мекемелер:
- All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Centre of Animal Husbandry
- Шығарылым: Том 61, № 5 (2025)
- Беттер: 14-29
- Бөлім: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://bakhtiniada.ru/0016-6758/article/view/296514
- DOI: https://doi.org/10.31857/S0016675825050028
- EDN: https://elibrary.ru/tmwdcx
- ID: 296514
Дәйексөз келтіру
Аннотация
Abdominal fat deposition in chickens is an important trait that affects meat quality, reproductive performance and overall production efficiency. This review analyses key aspects of the genetic regulation of this process, including the role of transcription factors, microRNAs and key metabolic pathways. The prospects for applying knowledge of molecular mechanisms in breeding programmes to achieve an optimal balance between production performance, product quality and reduced feed costs are discussed. Detailed attention is given to genetic studies, including GWAS, transcriptomics and the use of genome editing technologies, which reveal the polygenic nature of fat deposition. Mechanisms regulating lipogenesis and adipocyte differentiation are described, as well as interactions between signalling pathways such as PPAR and SREBP. The findings emphasise the importance of molecular approaches to improve the environmental sustainability of the industry and meet consumer demands for high quality meat products.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Dysin
All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Centre of Animal Husbandry
Хат алмасуға жауапты Автор.
Email: artemdysin@mail.ru
Ресей, St. Petersburg, Pushkin, 196601
G. Peglivanyan
All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Centre of Animal Husbandry
Email: artemdysin@mail.ru
Ресей, St. Petersburg, Pushkin, 196601
N. Reinbach
All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Centre of Animal Husbandry
Email: artemdysin@mail.ru
Ресей, St. Petersburg, Pushkin, 196601
A. Gabova
All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Centre of Animal Husbandry
Email: artemdysin@mail.ru
Ресей, St. Petersburg, Pushkin, 196601
A. Azovtseva
All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Centre of Animal Husbandry
Email: artemdysin@mail.ru
Ресей, St. Petersburg, Pushkin, 196601
A. Ryabova
All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Centre of Animal Husbandry
Email: artemdysin@mail.ru
Ресей, St. Petersburg, Pushkin, 196601
E. Polteva
All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Centre of Animal Husbandry
Email: artemdysin@mail.ru
Ресей, St. Petersburg, Pushkin, 196601
T. Larkina
All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of the L.K. Ernst Federal Research Centre of Animal Husbandry
Email: artemdysin@mail.ru
Ресей, St. Petersburg, Pushkin, 196601
Әдебиет тізімі
- Hood R.L. The cellular basis for growth of the abdominal fat pad in broiler-type chickens // Poultry Sci. 1982. V. 61. № 1. P. 117–121. https://doi.org/10.3382/ps.0610117
- Hakimi A.Y. Studies of managerial variables on broiler performance and abdominal fat levels: Doctor of Philosophy (Ph.D.). O: Oregon State University, 1992. 95 p.
- Tůmová E., Teimouri A. Fat deposition in the broiler chicken: А review // Sci. Agriculturae Bohemica. 2010. V. 41. № 2. P. 121–128.
- Koutsoumanis K., Allende A., Alvarez-Ordóñez A. et al. Update and review of control options for Campylobacter in broilers at primary production // EFSA J. 2020. V. 18. № 4. https://doi.org/10.2903/j.efsa.2020.6090
- Milisits G., Szentirmai E., Donkó T. et al. Effect of starting body fat content and genotype of laying hens on the changes in their live weight, body fat content, egg production and egg composition during the first egg-laying period // Brit. Poultry Sci. 2015. V. 56. № 6. P. 666–672. https://doi.org/10.1080/00071668.2015.1099612
- Anene D.O., Akter Y., Thomson P.C. et al. Hens that exhibit poorer feed efficiency produce eggs with lower albumen quality and are prone to being overweight // Animals. 2021. V. 11. № 10. https://doi.org/10.3390/ani11102986
- Urgessa O.E., Woldesemayat A.A. OMICs approaches and technologies for understanding low-high feed efficiency traits in chicken: Implication to breeding // Animal Biotechnol. 2023. V. 34. № 8. P. 4147–4166.https://doi.org/10.1080/10495398.2023.2187404
- Liu L., Cui H., Xing S. et al. Effect of divergent selection for intramuscular fat content on muscle lipid metabolism in chickens // Animals. 2019. V. 10. № 1. https://doi.org/10.3390/ani10010004
- Guo J., Qu L., Shao D. et al. Genetic architecture of abdominal fat deposition revealed by a genome-wide association study in the laying chicken // Genes. 2023. V. 15. № 1. https://doi.org/10.3390/genes15010010
- Hu G., Wang S., Tian J. et al. Epistatic effect between ACACA and FABP2 gene on abdominal fat traits in broilers // J. Genet. and Genomics. 2010. V. 37. № 8. P. 505–512. https://doi.org/10.1016/S1673-8527(09)60070-9
- Queipo-Ortuño M.I., Escoté X., Ceperuelo-Mallafré V. et al. FABP4 dynamics in obesity: discrepancies in adipose tissue and liver expression regarding circulating plasma levels // PLoS One. 2012. V. 7. № 11. https://doi.org/10.1371/journal.pone.0048605
- Zhu Y., Liu X., Wang Y. et al. Genome-wide association study revealed the effect of rs312715211 in ZNF652 gene on abdominal fat percentage of chickens // Biology. 2022. V. 11. № 12. https://doi.org/10.3390/biology11121849
- Wang Y., Wang H., Na W. et al. The retinoblastoma 1 gene (RB1) modulates the proliferation of chicken preadipocytes // Brit. Poultry Sci. 2019. V. 60. № 3. P. 323–329. https://doi.org/10.1080/00071668.2019.1584792
- Cheng B., Zhang H., Liu C. et al. Functional intronic variant in the retinoblastoma 1 gene underlies broiler chicken adiposity by altering nuclear factor-kB and SRY-related HMG box protein 2 binding sites // J. Agricultural and Food Chemistry. 2019. V. 67. № 35. P. 9727–9737. https://doi.org/10.1021/acs.jafc.9b01719
- Zhang K., Cheng B.H., Yang L.L. et al. Identification of a potential functional single nucleotide polymorphism for fatness and growth traits in the 3′-untranslated region of the PCSK1 gene in chickens // J. Animal Sci. 2017. V. 95. № 11. P. 4776–4786. https://doi.org/10.2527/jas2017.1706
- Pépin L., Colin E., Tessarech M. et al. A new case of PCSK1 pathogenic variant with congenital proprotein convertase 1/3 deficiency and literature review // J. Clin. Endocrinology & Metabolism. 2019. V. 104. № 4. P. 985–993. https://doi.org/10.1210/jc.2018-01854
- Mu X., Cui X., Liu R. et al. Identification of differentially expressed genes and pathways for abdominal fat deposition in ovariectomized and sham-operated chickens // Genes. 2019. V. 10. № 2. https://doi.org/10.3390/genes10020155
- Zheng H., Fu J., Xue P. et al. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion // Antioxidants & Redox Signaling. 2015. V. 22. № 10. P. 819–831. https://doi.org/10.1089/ars.2014.6017
- Ren S., Bian Y., Hou Y. et al. The roles of NFE2L1 in adipocytes: Structural and mechanistic insight from cell and mouse models // Redox Biology. 2021. V. 44. https://doi.org/10.1016/j.redox.2021.102015
- Fan X., Zhang Y., Qiu L., Miao Y. Negative effect of insulin-induced gene 2 on milk fat synthesis in buffalo mammary epithelial cells // J. Dairy Res. 2021. V. 88. № 4. P. 401–406. https://doi.org/10.1017/S0022029921000881
- De Boer J.F., Kuipers F., Groen A.K. Cholesterol transport revisited: A new turbo mechanism to drive cholesterol excretion // Trends in Endocrinology & Metabolism. 2018. V. 29. № 2. P. 123–133. https://doi.org/10.1016/j.tem.2017.11.006
- Zhang R., Li R., Feng Q. et al. Expression profiles and associations of FGF1 and FGF10 with intramuscular fat in Tibetan chicken // Brit. Poultry Sci. 2018. V. 59. № 6. P. 613–617. https://doi.org/10.1080/00071668.2018.1507018
- Wei W., Xiao J., Huang N. et al. Identification of central regulators related to abdominal fat deposition in chickens based on weighted gene co-expression network analysis // Poultry Sci. 2024. V. 103. № 3. https://doi.org/10.1016/j.psj.2024.103436
- Tian W., Wang D., Wang Z. et al. Evolution, expression profile, and regulatory characteristics of ACSL gene family in chicken (Gallus gallus) // Gene. 2021. V. 764. https://doi.org/10.1016/j.gene.2020.145094
- Huang H.Y., Liu R.R., Zhao G.P. et al. Integrated analysis of microRNA and mRNA expression profiles in abdominal adipose tissues in chickens // Sci. Reports. 2015. V. 5. № 1. https://doi.org/10.1038/srep16132
- Joseph R., Poschmann J., Sukarieh R. et al. ACSL1 is associated with fetal programming of insulin sensitivity and cellular lipid content // Mol. Endocrinology. 2015. V. 29. № 6. P. 909–920. https://doi.org/10.1210/me.2015-1020
- Griffin H.D., Guo K., Windsor D., Butterwith S.C. Adipose tissue lipogenesis and fat deposition in leaner broiler chickens // J. Nutrition. 1992. V. 122. № 2. P. 363–368. https://doi.org/10.1093/jn/122.2.363
- Shimano H. Sterol regulatory element-binding protein-1 as a dominant transcription factor for gene regulation of lipogenic enzymes in the liver // Trends in Cardiovascular Med. 2000. V. 10. № 7. P. 275–278. https://doi.org/10.1016/s1050-1738(00)00079-7
- Wan X., Yang Z., Ji H. et al. Effects of lycopene on abdominal fat deposition, serum lipid levels, and hepatic lipid metabolism-related enzymes in broiler chickens // Animal Bioscience. 2021. V. 34. № 3. P. 385–392.
- Wang H., Liu S., Li J. et al. 5-Hydroxytryptophan suppresses the abdominal fat deposit and is beneficial to the intestinal immune function in broilers // Frontiers in Physiology. 2020. V. 11. P. 655. https://doi.org/10.5713/ajas.20.0432
- Zhang M., Li J., Zhu Y. et al. Effect of vitamin E supplementation on deposition and gene expression profiling of abdominal fat in broiler chickens // J. Poultry Sci. 2021. V. 58. № 1. P. 40–50. https://doi.org/10.2141/jpsa.0200011
- Von Roemeling C.A., Marlow L.A., Pinkerton A.B. et al. Aberrant lipid metabolism in anaplastic thyroid carcinoma reveals stearoyl CoA desaturase 1 as a novel therapeutic target // J. Clin. Endocrinology & Metabolism. 2015. V. 100. № 5. P. E697–E709. https://doi.org/10.1210/jc.2014-2764
- Luo N., Shu J., Yuan X. et al. Differential regulation of intramuscular fat and abdominal fat deposition in chickens // BMC Genomics. 2022. V. 23. № 1. P. 308. https://doi.org/10.1186/s12864-022-08538-0
- Khatun J., Loh T.C., Akit H. et al. Fatty acid composition, fat deposition, lipogenic gene expression and performance of broiler fed diet supplemented with different sources of oil // Animal Sci. J. 2017. V. 88. № 9. P. 1406–1413. https://doi.org/10.1111/asj.12775
- Resnyk C.W., Chen C., Huang H. et al. RNA-Seq analysis of abdominal fat in genetically fat and lean chickens highlights a divergence in expression of genes controlling adiposity, hemostasis, and lipid metabolism // PloS One. 2015. V. 10. № 10. https://doi.org/10.1371/journal.pone.0139549
- Navidshad B., Royan M. Ligands and regulatory modes of peroxisome proliferator-activated receptor gamma (PPARγ) in avians // Crit. Reviews™ in Eukaryotic Gene Expression. 2015. V. 25. № 4. https://doi.org/10.1615/critreveukaryotgeneexpr.2015015272
- Désert C., Duclos M.J., Blavy P. et al. Transcriptome profiling of the feeding-to-fasting transition in chicken liver // BMC Genomics. 2008. V. 9. P. 1–19.
- Jensen-Urstad A.P.L. Post-Translational Regulation of FAS-Mediated PPARα Activation. Washington Univ. in St. Louis, 2013. https://doi.org/10.1186/1471-2164-9-611
- Bourneuf E., Hérault F., Chicault C. et al. Microarray analysis of differential gene expression in the liver of lean and fat chickens // Gene. 2006. V. 372. P. 162–170. https://doi.org/10.1016/j.gene.2005.12.028
- Resnyk C.W., Carré W., Wang X. et al. Transcriptional analysis of abdominal fat in chickens divergently selected on bodyweight at two ages reveals novel mechanisms controlling adiposity: Validating visceral adipose tissue as a dynamic endocrine and metabolic organ // BMC Genomics. 2017. V. 18. P. 1–31. https://doi.org/10.1186/s12864-017-4035-5
- Kang X., Amevor F., Zhang L. et al. Study on the major genes related with fat deposition in liver and abdominal fat of different breeds of chicken // Brazilian J. Poultry Sci. 2022. V. 24. № 1. https://doi.org/10.1590/1806-9061-2020-1373
- Wang Z., Yue Y.-X., Liu Z.-M. et al. Genome-wide analysis of the FABP gene family in liver of chicken (Gallus gallus): Identification, dynamic expression profile, and regulatory mechanism // Int. J. Mol. Sci. 2019. V. 20. № 23. https://doi.org/10.3390/ijms20235948
- Abdalla B.A., Chen J., Nie Q., Zhang X. Genomic insights into the multiple factors controlling abdominal fat deposition in a chicken model // Front. Genet. 2018. V. 9. https://doi.org/10.3389/fgene.2018.00262
- Dou H.-X., Wang T., Su H.-X. et al. Exogenous FABP4 interferes with differentiation, promotes lipolysis and inflammation in adipocytes // Endocrine. 2020. V. 67. P. 587–596. https://doi.org/10.1007/s12020-019-02157-8
- Ma Z., Luo N., Liu L. et al. Identification of the molecular regulation of differences in lipid deposition in dedifferentiated preadipocytes from different chicken tissues // BMC Genomics. 2021. V. 22. № 1. P. 232. https://doi.org/10.1186/s12864-021-07459-8
- Perini F., Wu Z., CartoniMancinelli A. et al. RNAseq reveals modulation of genes involved in fatty acid biosynthesis in chicken liver according to genetic background, sex, and diet // Animal Genetics. 2023. V. 54. № 3. P. 338–354. https://doi.org/10.1111/age.13299
- Nematbakhsh S., Pei Pei C., Selamat J. et al. Molecular regulation of lipogenesis, adipogenesis and fat deposition in chicken // Genes. 2021. V. 12. № 3. https://doi.org/10.3390/genes12030414
- Li F., Li D., Zhang M. et al. miRNA-223 targets the GPAM gene and regulates the differentiation of intramuscular adipocytes // Gene. 2019. V. 685. P. 106–113. https://doi.org/10.1016/j.gene.2018.10.054
- Yuan X., Cui H., Jin Y. et al. Fatty acid metabolism-related genes are associated with flavor-presenting aldehydes in Chinese local chicken // Front. Genet. 2022. V. 13. https://doi.org/10.3389/fgene.2022.902180
- D’Andre H.C., Paul W., Shen X. et al. Identification and characterization of genes that control fat deposition in chickens // J. Animal Sci. and Biotechnology. 2013. V. 4. № 1. P. 43. https://doi.org/10.1186/2049-1891-4-43
- Wang D., Li X., Zhang P. et al. ELOVL gene family plays a virtual role in response to breeding selection and lipid deposition in different tissues in chicken (Gallus gallus) // BMC Genomics. 2022. V. 23. № 1. P. 705. https://doi.org/10.1186/s12864-022-08932-8
- Gregory M.K., Geier M.S., Gibson R.A., James M.J. Functional characterization of the chicken fatty acid elongases // J. Nutrition. 2013. V. 143. № 1. P. 12–16. https://doi.org/10.3945/jn.112.170290
- Mihelic R., Winter H., Powers J. et al. Genes controlling polyunsaturated fatty acid synthesis are developmentally regulated in broiler chicks // Brit. Poultry Sci. 2020. V. 61. № 5. P. 508–517. https://doi.org/10.1080/00071668.2020.1759788
- Hermier D. Lipoprotein metabolism and fattening in poultry // J. Nutrition. 1997. V. 127. № 5. P. 805S–808S. https://doi.org/10.1093/jn/127.5.805S
- Sato K., Akiba Y. Lipoprotein lipase mRNA expression in abdominal adipose tissue is little modified by age and nutritional state in broiler chickens // Poultry Sci. 2002. V. 81. № 6. P. 846–852. https://doi.org/10.1093/ps/81.6.846
- Sato K., Akiba Y., Chida Y., Takahashi K. Lipoprotein hydrolysis and fat accumulation in chicken adipose tissues are reduced by chronic administration of lipoprotein lipase monoclonal antibodies // Poultry Sci. 1999. V. 78. № 9. P. 1286–1291. https://doi.org/10.1093/ps/78.9.1286
- Montalto M.B., Bensadoun A. Lipoprotein lipase synthesis and secretion: Effects of concentration and type of fatty acids in adipocyte cell culture // J. Lipid Res. 1993. V. 34. № 3. P. 397–407.
- Zhang W., Bensadoun A. Identification of a silencing element in the chicken lipoprotein lipase gene promoter: Characterization of the silencer-binding protein and delineation of its target nucleotide sequence // Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 1999. V. 1436. № 3. P. 390–404. https://doi.org/10.1016/s0005-2760(98)00148-9
- Li Z., Li J., Lin Z. et al. Knockdown of CPT1A induces chicken adipocyte differentiation to form lipid droplets // Braz. J. Poultry Sci. 2022. V. 24. № 04. https://doi.org/10.1590/1806-9061-2021-1589
- Liu R., Wang H., Liu J. et al. Uncovering the embryonic development-related proteome and metabolome signatures in breast muscle and intramuscular fat of fast-and slow-growing chickens // BMC Genomics. 2017. V. 18. № 1. P. 816. https://doi.org/10.1186/s12864-017-4150-3
- Schlaepfer I.R., Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential // Endocrinology. 2020. V. 161. № 2. https://doi.org/10.1210/endocr/bqz046
- Yang C., Zhu Y., Ding Y. et al. Identifying the key genes and functional enrichment pathways associated with feed efficiency in cattle // Gene. 2022. V. 807. https://doi.org/10.1016/j.gene.2021.145934
- Morak M., Schmidinger H., Riesenhuber G. et al. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues // Molecular & Cellular Proteomics. 2012. V. 11. № 12. P. 1777–1789. https://doi.org/10.1074/mcp.M111.015743
- Chon S.-H., Zhou Y.X., Dixon J.L. et al. Intestinal monoacylglycerol metabolism: Developmental and nutritional regulation of monoacylglycerol lipase and monoacylglycerol acyltransferase // J. Biol. Chemistry. 2007. V. 282. № 46. P. 33346–33357. https://doi.org/10.1074/jbc.M706994200
- Wang G., Kim W.K., Cline M.A. et al. Factors affecting adipose tissue development in chickens: A review // Poultry Sci. 2017. V. 96. № 10. P. 3687–3699. https://doi.org/10.3382/ps/pex184
- Rosen E.D., Spiegelman B.M. PPARγ: A nuclear regulator of metabolism, differentiation, and cell growth // J. Biol. Chemistry. 2001. V. 276. № 41. P. 37731–37734. https://doi.org/10.1074/jbc.R100034200
- Loft A., Schmidt S.F., Mandrup S. Modulating the genomic programming of adipocytes // Cold Spring Harbor Symposia on Quantitative Biology. 2015. V. 80. P. 239–248. https://doi.org/10.1101/sqb.2015.80.027516
- Royan M., Navidshad B. Peroxisome proliferator-activated receptor gamma (PPARγ), a key regulatory gene of lipid metabolism in chicken // World's Poultry Sci. J. 2016. V. 72. № 4. P. 773–784. https://doi.org/10.1017/S0043933916000684
- Mohammadpour F., Darmani-Kuhi H., Mohit A. et al. Obesity, insulin resistance, adiponectin, and PPAR-γ gene expression in broiler chicks fed diets supplemented with fat and green tea (Camellia sinensis) extract // Domestic Animal Endocrinology. 2020. V. 72. https://doi.org/10.1016/j.domaniend.2020.106440
- Larkina T.A., Sazanova A.L., Fomichev K.A. et al. HMG1A and PPARG are differently expressed in the liver of fat and lean broilers // J. Applied Genet. 2011. V. 52. P. 225–228. https://doi.org/10.1007/s13353-010-0023-z
- Dutta D., Lai K.-Y., Reyes-Ordoñez A. et al. Lanthionine synthetase C-like protein 2 (LanCL2) is important for adipogenic differentiation // J. Lipid Res. 2018. V. 59. № 8. P. 1433–1445. https://doi.org/10.1194/jlr.M085274
- Ding N., Gao Y., Wang N. et al. Functional analysis of the chicken PPARγ gene 5′-flanking region and C/EBPα-mediated gene regulation // Comparative Biochem. and Physiol. Part B: Biochem. and Mol. Biol. 2011. V. 158. № 4. P. 297–303. https://doi.org/10.1016/j.cbpb.2011.01.001
- Zhai B., Li H., Li S. et al. Transcriptome analysis reveals FABP5 as a key player in the development of chicken abdominal fat, regulated by miR-122-5p targeting // BMC Genomics. 2023. V. 24. № 1. P. 386. https://doi.org/10.1186/s12864-023-09476-1
- Chen Y., Gao L., Lin T. et al. C/EBPZ modulates the differentiation and proliferation of preadipocytes // Int. J. Obesity. 2022. V. 46. № 3. P. 523–534. https://doi.org/10.1038/s41366-021-01020-z
- Gao L., Wang Y., Gao Q. et al. Transcriptional control of CCAAT/enhancer binding protein zeta gene in chicken adipose tissue // Poultry Sci. 2024. V. 103. № 4. https://doi.org/10.1016/j.psj.2024.103540
- Alipour F., Hassanabadi A. Effects of sterol regulatory element-binding protein (SREBP) in chickens // Lipids in Health and Disease. 2012. V. 11. № 1. https://doi.org/10.1186/1476-511X-11-20
- Hassanabadi A., Hajati H., Javadi M. Effects of soy-lecithin, soy-oil and tallow on performance and expression of SREBP-1 gene in broiler chickens // Iranian J. Animal Sci. Res. 2015. V. 7. № 3. P. 294–304. https://doi.org/10.22067/ijasr.v7i3.51518
- Zhuo Z., Lamont S.J., Lee W.R. et al. RNA-seq analysis of abdominal fat reveals differences between modern commercial broiler chickens with high and low feed efficiencies // PloS One. 2015. V. 10. № 8. https://doi.org/10.1371/journal.pone.0135810
- Milkiewicz M., Roudier E., Doyle J.L. et al. Identification of a mechanism underlying regulation of the anti-angiogenic forkhead transcription factor FoxO1 in cultured endothelial cells and ischemic muscle // Am. J. Pathol. 2011. V. 178. № 2. P. 935–944. https://doi.org/10.1016/j.ajpath.2010.10.042
- Nakae J., Kitamura T., Kitamura Y. et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation // Developmental Cell. 2003. V. 4. № 1. P. 119–129. https://doi.org/10.1016/s1534-5807(02)00401-x
- Pirany N., BakraniBalani A., Hassanpour H., Mehraban H. Differential expression of genes implicated in liver lipid metabolism in broiler chickens differing in weight // Brit. Poultry Sci. 2020. V. 61. № 1. P. 10–16. https://doi.org/10.1080/00071668.2019.1680802
- Aouadi M., Binetruy B., Caron L. et al. Role of MAPKs in development and differentiation: lessons from knockout mice // Biochimie. 2006. V. 88. № 9. P. 1091–1098. https://doi.org/10.1016/j.biochi.2006.06.003
- Aouadi M., Laurent K., Prot M. et al. Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages // Diabetes. 2006. V. 55. № 2. P. 281–289. https://doi.org/10.2337/diabetes.55.02.06.db05-0963
- Yin R., Dong Y.G., Li H.L. PPARγ phosphorylation mediated by JNK MAPK: A potential role in macrophage-derived foam cell formation // Acta Pharmacologica Sinica. 2006. V. 27. № 9. P. 1146–1152. https://doi.org/10.1111/j.1745-7254.2006.00359.x
- De Sá P.M., Richard A.J., Hang H., Stephens J.M. Transcriptional regulation of adipogenesis // Comprehensive Physiology. 2011. V. 7. № 2. P. 635–674. https://doi.org/10.1002/cphy.c160022
- Wang X., Carre W., Zhou H. et al. Duplicated Spot 14 genes in the chicken: Characterization and identification of polymorphisms associated with abdominal fat traits // Gene. 2004. V. 332. P. 79–88. https://doi.org/10.1016/j.gene.2004.02.021
- Huang H., Liu R., Zhao G. et al. Integrated analysis of microRNA and mRNA expression profiles in abdominal adipose tissues in chickens // Sci. Rep. 2015. V. 5. № 1. https://doi.org/10.1038/srep16132
- Tian W., Liu Y., Zhang W. et al. CircDOCK7 facilitates the proliferation and adipogenic differentiation of chicken abdominal preadipocytes through the gga-miR-301b-3p/ACSL1 axis // J. Animal Sci. and Biotechnology. 2023. V. 14. № 1. P. 91. https://doi.org/10.1186/s40104-023-00891-8
- Chen Y., Zhao Y., Jin W. et al. MicroRNAs and their regulatory networks in Chinese Gushi chicken abdominal adipose tissue during postnatal late development // BMC Genomics. 2019. V. 20. P. 1–18. https://doi.org/10.1186/s12864-019-6094-2
- Ma X., Sun J., Zhu S. et al. MiRNAs and mRNAs analysis during abdominal preadipocyte differentiation in chickens // Animals. 2020. V. 10. № 3. https://doi.org/10.3390/ani10030468
- Wang S., Zhang Y., Yuan X. et al. Identification of differentially expressed microRNAs during preadipocyte differentiation in Chinese crested duck // Gene. 2018. V. 661. P. 126–132. https://doi.org/10.1016/j.gene.2018.03.085
- Xiao L., Qi L., Fu R. et al. A large-scale comparison of the meat quality characteristics of different chicken breeds in South China // Poultry Sci. 2024. V. 103. № 6. https://doi.org/10.1016/j.psj.2024.103740
- Chen X., Niu J., Geng Z. Gene expression and plasma lipid content in relation to intramuscular fat in Chinese indigenous Wuhua chicken // J. Applied Poultry Res. 2017. V. 26. № 3. P. 391–400. https://doi.org/10.3382/japr/pfx007
- Fisher E.A., Ginsberg H.N. Complexity in the secretory pathway: The assembly and secretion of apolipoprotein B-containing lipoproteins // J. Biol. Chem. 2002. V. 277. № 20. P. 17377–17380. | https://doi.org/10.1074/jbc.R100068200
- Gerhardt L. Common breeds of backyard poultry // Backyard Poultry Medicine and Surgery: A Guide for Veterinary Practitioners, № 6. John Wiley and Sons, 2015. P. 18–26.
- Ji B., Middleton J.L., Ernest B. et al. Molecular and metabolic profiles suggest that increased lipid catabolism in adipose tissue contributes to leanness in domestic chickens // Physiol. Genomics. 2014. V. 46. № 9. P. 315–327. https://doi.org/10.1152/physiolgenomics.00163.2013
- Yang Ning Y.N., Wu GuiQin W.G., Deng XueMei D.X. et al. A new SNP of PGC-1 α gene associated with abdominal fat in chickens //2006.
- Abplanalp H., Okamoto S., Napolitano D. et al. A study of heterosis and recombination loss in crosses of inbred Leghorn lines derived from a common base population // Poultry Sci. 1984. V. 63. № 2. P. 234–239. https://doi.org/10.3382/ps.0630234
- Burghelle-Mayeur C., Demarne Y., Mérat P. Influence of the sex-linked dwarfing gene (dw) on the lipid composition of plasma, egg yolk and abdominal fat pad in White Leghorn laying hens: effect of dietary fat // J. Nutrition. 1989. V. 119. № 10. P. 1361–1368. https://doi.org/10.1093/jn/119.10.1361
- El-Kazzi M., Bordas A., Gandemer G. et al. Divergent selection for residual food intake in Rhode Island Red egg-laying lines: Gross carcase composition, carcase adiposity and lipid contents of tissues // Brit. Poultry Sci. 1995. V. 36. № 5. P. 719–728. https://doi.org/10.1080/00071669508417816
- Bedere N., Druet D.P., Herault F. et al. Genetic determinism of abdominal fat tissue and relationships with body weight and egg quality in Rhode Island Red // XIth Europ. Symp. on Poultry Genetics (ESPG). Guarant Intern. spol. s ro. 2019. P. np.
- Chen P., Suh Y., Choi Y.M. et al. Developmental regulation of adipose tissue growth through hyperplasia and hypertrophy in the embryonic Leghorn and broiler // Poultry Sci. 2014. V. 93. № 7. P. 1809–1817. https://doi.org/10.3382/ps.2013-03816
Қосымша файлдар
