Polymorphism of the NIPAL1 gene rs135173498 as a marker of embryonic lethality in auliekol cattle
- Авторлар: Belaya A.V.1, Klimanova Е.A.2, Norkina V.M.2, Beishova I.S.3
-
Мекемелер:
- Belarusian State Pedagogical University named after Maxim Tank
- Novosibirsk State Agrarian University
- Zhangir Khan West Kazakhstan Agrarian Technical University
- Шығарылым: Том 61, № 1 (2025)
- Беттер: 67-73
- Бөлім: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://bakhtiniada.ru/0016-6758/article/view/285523
- DOI: https://doi.org/10.31857/S0016675825010068
- EDN: https://elibrary.ru/VEPCSW
- ID: 285523
Дәйексөз келтіру
Аннотация
It was found that in Auliekol cattle, SNP G/A rs135173498 associated with live weight at birth (p-value = 2.71E-06) is characterized by the absence of live-born calves homozygous for the rare genotype with a significant sample size of 497 animals. At the same time, calves with a heterozygous genotype were not characterized by a decrease in live weight at birth relative to the values of this indicator for the sample as a whole. The article analyzes possible mechanisms for the development of the phenotypic effect of SNP rs135173498 of the NIPAL1 gene as a factor of embryonic lethality in Auliekol cattle, and, presumably, in the Kazakh Whitehead, Aberdeen Angus and Charolais breeds.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Belaya
Belarusian State Pedagogical University named after Maxim Tank
Хат алмасуға жауапты Автор.
Email: Kolyuchka005@rambler.ru
Белоруссия, Minsk
Е. Klimanova
Novosibirsk State Agrarian University
Email: Kolyuchka005@rambler.ru
Ресей, Novosibirsk
V. Norkina
Novosibirsk State Agrarian University
Email: Kolyuchka005@rambler.ru
Ресей, Novosibirsk
I. Beishova
Zhangir Khan West Kazakhstan Agrarian Technical University
Email: Kolyuchka005@rambler.ru
Қазақстан, Uralsk
Әдебиет тізімі
- Шайдуллин Р.Р., Фаизов Т.Х., Ганиев А.С. Характер распространения летальных генов у молочного скота // Уч. записки КГАВМ им. Н. Э. Баумана. 2015. № 2. C. 242–244. https://doi.org/cyberleninka.ru/article/n/harakter-rasprostraneniya-letalnyh-genov-u-molochnogo-skota
- Charlier C., Coppieters W., Rollin F. et al. Highly effective snp-based association mapping and management of recessive defects in livestock // Nat. Genet. 2008. V. 40. P. 449–454. https://doi.org/10.1038/ng.96
- Van Raden P.M., Olson K.M., Null D.J. et al. Harmful recessive effects on fertility detected by absence of homozygous haplotypes // J. Dairy Sci. 2011. № 94. P. 6153–6161. https://doi.org/10.3168/jds.2011-4624
- Fritz S., Capitan A., Djari A. et al. Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in gart, shbg and slc37a2 // PLoS One. 2013. V. 8. № 6. https://doi.org/10.1371/journal.pone.0065550
- Cooper T.A., Wiggans G.R., Van Raden P.M. et al. Genomic evaluation of ayrshire dairy cattle and new haplotypes affecting fertility and stillbirth in holstein, brown swiss and ayrshire breeds // http://aipl.arsusda.gov
- Sonstegard T.S., Cole J.B., Van Raden P.M. et al. Identification of a nonsense mutation in cwc15 associated with decreased reproductive efficiency in jersey cattle // PLoS One. 2013. V. 8. № 1. P. 1–6. https://doi.org/10.1371/journal.pone.0054872
- McClure M., Kim E., Bickhart D. et al. Fine mapping for weaver syndrome in brown swiss cattle and the identification of 41 concordant mutations across nrcam, pnpla8 and cttnbp2 // PLoS One. 2013. V. 8. № 3. P. 1–16. https://doi.org/10.1371/journal.pone.0059251
- Kadri N.K., Sahana G., Charlier C. et al. A 660-Kb deletion with antagonistic effects on fertility and milk production segregates at high frequency in nordic red cattle: Additional evidence for the common occurrence of balancing selection in livestock // PLoS Genet. 2014. V. 10. № 1. P. 1–11. https://doi.org/10.1371/journal.pgen.1004049
- Häfliger I.M., Spengeler M., Seefried F.R. et al. Four novel candidate causal variants for deficient homozygous haplotypes in holstein cattle // Sci. Rep. 2022. № 12. P. 1–13. https://doi.org/10.1038/s41598-022-09403-6
- Cooper T.A., Wiggans G.R., Null D.J. et al. Genomic evaluation, breed identification, and discovery of a haplotype affecting fertility for ayrshire dairy cattle // J. Dairy Sci. 2014. V. 97. № 6. P. 3878–3882. https://doi.org/10.3168/jds.2013-7427
- Гладырь Е.А., Терновская О.А., Костюнина О.В. Скрининг гаплотипа фертильности АН1 айрширской породы крупного рогатого скота Центрального и Северо-Западного регионов России // АгроЗооТехника. 2018. Т. 1. № 4. С. 1–13. https://doi.org/10.15838/alt.2018.1.4.1
- Зиновьева Н.А. Гаплотипы фертильности голштинского скота // С.-х. биология. 2016. Т. 51. № 4. C. 423–435. https://doi.org/10.15389/agrobiology.2016.4.423rus
- Белая Е.В., Наметов А.М., Шамшидин А.С. Полногеномный поиск ассоциаций c QTL мясной продуктивности у скота казахской белоголовой и аулиекольской пород // Главный зоотехник. 2022. № 7. С. 3–11. https://doi.org/10.33920/sel-03-2207-01
- Белая Е.В. Биологические функции породоспецифичных SNP-маркеров мясной продуктивности у крупного рогатого скота казахской белоголовой и аулиекольской пород // Генетика и разведение животных. 2022. № 2. С. 33–39. https://doi.org/10.31043/2410-2733-2022-2-33-39
- Белая Е.В., Бейшова И.С., Селионова М.И. и др. Полногеномный поиск QLT-ассоциированных SNP для прогнозирования наследственного потенциала продуктивности у казахского белоголового скота // Вестник АПК Ставрополья. 2022. № 3(47). С. 18–25. https://doi.org/10.31279/2222-9345-2022-11-47-18-25
- Purcell S.M., Neale B., Todd-Brown K. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses // Am. J. Hum. Genet. 2007. V. 81. P. 559–575. https://doi.org/10.1086/519795
- Manialawy Y., Khan S.R., Bhattacharjee A. et al. The magnesium transporter nipal1 is a pancreatic islet-expressed protein that conditionally impacts insulin secretion // J. Biol. Chem. 2020. V. 295. P. 9879–9892. https://doi.org/10.1074/jbc.RA120.013277
- Dadousis C., Somavilla A., Ilska J.J. et al. A genome-wide association analysis for body weight at 35 days measured on 137,343 broiler chickens // Genet. Sel. Evol. 2021. V. 53(1). P. 1–14. https://doi.org/10.1186/s12711-021-00663-w
- Wei W., Gao W., Li Q. et al. Comprehensive characterization of posttranscriptional impairment-related 3′-utr mutations in 2413 whole genomes of cancer patients // NPJ Genom. Med. 2022. V. 7. P. 1–12. https://doi.org/10.1038/s41525-022-00305-0
- Mayr C. What are 3’ utrs doing? // Cold. Spring. Harb. Perspect Biol. 2019. № 10. P. 1–15. https://doi.org/10.1101/cshperspect.a034728
- Duff M.O., Olson S., Wei X. et al. Genome-wide identification of zero nucleotide recursive splicing in drosophila // Nature. 2015. №. 521(7552). P. 376–379. https://doi.org/10.1038/nature14475
- Beishova I., Dossybayev K., Shamshidin A. et al. Distribution of homozygosity regions in the genome of Кazakh cattle breeds // Diversity. 2022. V. 14(4). P. 1–11. https://doi.org/10.3390/d14040279
Қосымша файлдар
