VNTR polymorphism of the AS3MT gene modifies the association of age of onset of schizophrenia with pre- and perinatal hypoxia
- 作者: Korovaitseva G.I.1, Gabaeva M.V.1, Golimbet V.E.1
-
隶属关系:
- Mental Health Research Centre
- 期: 卷 61, 编号 5 (2025)
- 页面: 89-95
- 栏目: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://bakhtiniada.ru/0016-6758/article/view/276946
- DOI: https://doi.org/10.31857/S0016675825050082
- EDN: https://elibrary.ru/tmbxgr
- ID: 276946
如何引用文章
详细
The interaction of environmental factors and genetic predisposition factors can action not only the risk of developing schizophrenia, but also its course and functional outcome. Hypoxia in the prenatal and perinatal period is an important environmental risk factor. It can lead to disruption of the brain development and nervous system in the fetus and newborn and, as a consequence, to the development of psychopathology at a later age. In turn, the VNTR polymorphism of the AS3MT (arsenite methyltransferase) gene plays an important role in regulating the expression of the unique AS3MTd2d3 isoform, which is a potential risk factor for the development of schizophrenia. In our work, we studied the effect of interaction between hypoxia and VNTR AS3MT on one of the clinical characteristics of the disease – the age of onset of schizophrenia. The study included 520 patients with schizophrenia from the Russian population, including 170 people who had a history of hypoxia in the prenatal or perinatal period. It was found that women with a history of hypoxia and the V2/V2 genotype have an earlier age of disease onset associated with a poor prognosis of the disease.
全文:

作者简介
Galina Korovaitseva
Mental Health Research Centre
编辑信件的主要联系方式.
Email: korovaitseva@mail.ru
ORCID iD: 0000-0001-7653-4242
俄罗斯联邦, Moscow, 115522
Marina Gabaeva
Mental Health Research Centre
Email: gobaeva@yandex.ru
ORCID iD: 0000-0002-4480-7661
俄罗斯联邦, Moscow, 115522
Vera Golimbet
Mental Health Research Centre
Email: golimbet@mail.ru
ORCID iD: 0000-0002-9960-7114
俄罗斯联邦, Moscow, 115522
参考
- Хоменко Н.В. Генетические и средовые факторы в развитии шизофрении // Мед. журнал. 2012. № 2. С. 15–18.
- Hilker R., Helenius D., Fagerlund B. et al. Heritability of schizophrenia and schizophrenia spectrum based on the nationwide Danish twin register // Biol. Psychiatry. 2018. V. 83. № 6. P. 492–498. https://doi.org/10.1016/j.biopsych.2017.08.017
- Stefansson H., Ophof R.A., Steinberg S. et al. Common variants conferring risk of schizophrenia // Nature. 2009. V. 460. № 7256. P. 744–747. https://doi.org/10.1038/nature08186
- Gejman P.V., Sanders A.R., Duan J. The role of genetics in the etiology of schizophrenia // Psychiatr. Clin. North Am. 2010. V. 33. № 1. P. 35–66. https://doi.org/10.1016/j.psc.2009.12.003
- Trubetskoy V., Pardiña A.F., Qi T. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia // Nature. 2022. V. 604. P. 502–508. https://doi.org/10.1038/s41586-022-04434-5
- Lam M., Chen C.Y., Li Z. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations // Nat. Genet. 2019. V. 51. № 12. Р. 1670–1678. https://doi.org/10.1038/s41588-019-0512-x
- Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke S., Walters J.T., O’Donovan M.C. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia // MedRxiv. 2020.09.12.20192922. https://doi.org/10.1101/2020.09.12.20192922
- Polderman T.J., Benyamin B., de Leeuw C.A. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies // Nat. Genet. 2015. V. 47. № 7. P. 702–709. https://doi.org/10.1038/ng.3285
- European Network of Schizophrenia Networks for the Study of Gene-Environment Interactions. Schizophrenia etiology: Do gene-environment interactions hold the key? // Schizophr. Res. 2008. V. 102. № 1–3. P. 21–26. https://doi.org/10.1016/j.schres.2008.04.003
- Мазаева Н.А. Шизофрения: пренатальные и постнатальные факторы риска // Журнал неврол. и психиатрии им. С.С. Корсакова. 2012. Т. 112. № 5. Р. 98–107.
- Tsuang M. Schizophrenia: Genes and environment // Biol. Psychiatry. 2000. V. 47. № 3. P. 210–220. https://doi.org/10.1016/s0006-3223(99)00289-9
- Licinio J. Gene-environment interactions in molecular psychiatry // Mol. Psychiatry. 2002. V. 7. № 2. P. 123–124. https://doi.org/10.1038/sj.mp.4001066
- Kelly J., Murray R.M. What risk factors tell us about the causes of schizophrenia and related psychoses // Curr. Psychiatry Rep. 2000. V. 2. № 5. P. 378–385. https://doi.org/10.1007/s11920-000-0019-1
- Van Os J., Rutten B.P., Poulton R. Gene-environment interactions in schizophrenia: Review of epidemiological findings and future directions // Schizophr. Bull. 2008. V. 34. № 6. P. 1066–1082. https://doi.org/10.1093/schbul/sbn117
- Mittal V.A., Ellman L.M., Cannon T.D. Gene-environment interaction and covariation in schizophrenia: The role of obstetric complications // Schizophr. Bull. 2008. V. 34. № 6. P. 1083–1094. https://doi.org/10.1093/schbul/sbn080
- Giannopoulou I., Pagida M.A., Brian D.D. et al. Perinatal hypoxia as a risk factor for psychopathology later in life: The role of dopamine and neurotrophins // Hormones. 2018. V. 17. P. 25–32. https://doi.org/10.1007/s42000-018-0007-7
- Davies C., Segre G., Estradé A. et al. Prenatal and perinatal risk and protective factors for psychosis: A systematic review and meta-analysis // The Lancet Psychiatry. 2020. V. 7. № 5. P. 399–410. https://doi.org/10.1016/S2215-0366(20)30057-2
- Dalman C., Thomas H.V., David A.S. et al. Signs of asphyxia at birth and risk of schizophrenia. Population-based case-control study // Br. J. Psychiatry. 2001. V. 179. P. 403–408. https://doi.org/10.1192/bjp.179.5.403
- Wortinger L.A., Shadrin A.A., Szabo A. et al. The impact of placental genomic risk for schizophrenia and birth asphyxia on brain development // Transl. Psychiatry. 2023. V. 13. № 1. P. 343–351. https://doi.org/10.1038/s41398-023-02639-4
- Wortinger L.A., Stavrum A.K., Shadrin A. et al. Divergent epigenetic responses to perinatal asphyxia in severe mental disorders // Transl. Psychiatry. 2024. V. 14. № 1. P. 16–27. https://doi.org/10.1038/s41398-023-02709-7
- Nalivaeva N.N., Turner A.J., Zhuravin I.A. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration // Front. Neurosci. 2018. V. 12. P. 825–845. https://doi.org/10.3389/fnins.2018.00825
- Schmidt-Kastner R., van Os J., Esquivel G. et al. An environmental analysis of genes associated with schizophrenia: Hypoxia and vascular factors as interacting elements in the neurodevelopmental model // Mol. Psychiatry. 2012. V. 17. № 12. P. 1194–1205. https://doi.org/10.1038/mp.2011.183
- Korovaitseva G.I., Gabaeva M.V., Yunilainen O.A., Golimbet V.E. Effect of VNTR polymorphism of the AS3MT gene and obstetrical complications on the severity of schizophrenia // Bull. Exp. Biol. Med. 2019. V. 168. № 1. Р. 84–86. https://doi.org/10.1007/s10517-019-04653-3
- Haukvik U.K., Agartz I. Økerkomplikasjoner under svangerskapogfødselrisikoen for schizofreni? [Do obstetric complications increase the risk of schizophrenia?] // Tidsskr Nor. Laegeforen. 2010. V. 130. № 3. P. 270–272. (Norwegian). https://doi.org/10.4045/tidsskr.09.0699
- Wortinger L.A., Barth C., Nerland S. et al. Association of birth asphyxia with regional white matter abnormalities among patients with schizophrenia and bipolar disorders // JAMA Network Open. 2021. V. 4. № 12. https://doi.org/10.1001/jamanetworkopen.2021.39759
- Cannon T.D., Thompson P.M., van Erp T.G.M. et al. Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia // Proc. Natl Acad. Sci. USA. 2002. V. 99. P. 3228–3233. https://doi.org/10.1073/pnas.052023499
- Cannon T.D., van Erp T.G.M., Rosso I.M. et al. Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls // Arch. Gen. Psychiatry. 2002. V. 59. № 1. P. 35–41. https://doi.org/10.1001/archpsyc.59.1.35
- Wortinger L.A., Engen K., Barth C. et al. Asphyxia at birth affects brain structure in patients on the schizophrenia-bipolar disorder spectrum and healthy participants // Psychol. Med. 2022. V. 52. № 6. P. 1050–1059. https://doi.org/10.1017/S0033291720002779
- Wang X., Cui L., Ji X. Cognitive impairment caused by hypoxia: From clinical evidences to molecular mechanisms // Metab. Brain Dis. 2022. V. 37. № 1. P. 51–66. https://doi.org/10.1007/s11011-021-00796-3
- Li M., Jaffe A.E., Straub R.E. et al. A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus // Nat. Med. 2016. V. 22. № 6. Р. 649–656. https://doi.org/10.1038/nm.4096
- Cai X., Yang Z.H., Li H.J. et al. A human-specific schizophrenia risk tandem repeat affects alternative splicing of a human-unique isoform AS3MTd2d3 and mushroom dendritic spine density // Schizophr. Bull. 2021. V. 47. № 1. P. 219–227. https://doi.org/10.1093/schbul/sbaa098
- Zhao W., Zhang Q., Chen X. et al. The VNTR of the AS3MT gene is associated with brain activations during a memory span task and their training-induced plasticity // Psychol. Med. 2021. V. 51. № 11. P. 1927–1932. https://doi.org/10.1017/S0033291720000720
- Li X., Xiao Y., Zhao Q. et al. The neuroplastic effect of working memory training in healthy volunteers and patients with schizophrenia: Implications for cognitive rehabilitation // Neuropsychologia. 2015. V. 75. P. 149–162. https://doi.org/10.1016/j.neuropsychologia.2015.05.029
- Thermenos H.W., Keshavan M.S., Juelich R.J. et al. A review of neuroimaging studies of young relatives of individuals with schizophrenia: a developmental perspective from schizotaxia to schizophrenia // Am. J. Med. Genet. (part B Neuropsychiatr. Genet.). 2013. V. 162. № 7. P. 604–635. https://doi.org/10.1002/ajmg.b.32170
- Kirov G., Jones P.B., Harvey I. et al. Do obstetric complications cause the earlier age at onset in male than female schizophrenics? // Schizophr. Res. 1996. V. 2. № 1–2. P. 117–124. https://doi.org/10.1016/0920-9964(95)00063-1
- Rosso I.M., Cannon T.D., Huttunen T. et al. Obstetric risk factors for early-onset schizophrenia in a Finnish birth cohort // Am. J. Psychiatry. 2000. V. 157. № 5. P. 801–807. https://doi.org/10.1176/appi.ajp.157.5.801
- Cannon T.D., Rosso I.M., Hollister J.M. et al. A prospective cohort study of genetic and perinatal influences in the etiology of schizophrenia // Schizophr. Bull. 2000. V. 26. № 2. P. 351–366. https://doi.org/10.1093/oxfordjournals.schbul.a033458
- Zhan N., Sham P.C., So H.C., Lui S.S.Y. The genetic basis of onset age in schizophrenia: evidence and models // Front. Genet. 2023. V. 14. https://doi.org/10.3389/fgene.2023.1163361
- Коровайцева Г.И., Лежейко Т.В., Олейчик И.В., Голимбет В.Е. Ассоциация полиморфизма VNTR гена AS3MT с риском развития шизофрении // Генетика. 2023. Т. 59. № 4. С. 481–486. http://doi.org/10.31857/S0016675823040045
- Immonen J., Jääskeläinen E., Korpela H., Miettunen J. Age at onset and the outcomes of schizophrenia: A systematic review and meta-analysis // Early Interv. Psychiatry. 2017. V. 11. № 6. P. 453–460. https://doi.org/10.1111/eip.12412
补充文件
