Анализ генетических факторов спорадических случаев шизофрении в семейных трио с использованием метода полногеномного секвенирования

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Шизофрения – распространенное психическое заболевание, наследственная природа которого подтверждена многочисленными исследованиями. В настоящее время выявлено более сотни генетических локусов, ассоциированных с шизофренией, также идентифицированы редкие варианты в генах и хромосомные перестройки, связанные с семейными случаями заболевания. Однако не всегда удается определить наследственную природу патологии, многие случаи шизофрении являются спорадическими, а генетическая причина таких случаев остается неизвестна. С использованием данных полногеномного секвенирования трех семейных трио российского происхождения со спорадическими формами шизофрении мы провели поиск редких потенциально патогенных вариантов в кодирующих и регуляторных локусах генома, включая de novo и компаундные мутации. Также провели оценку полигенного риска развития шизофрении с использованием распространенных полиморфных маркеров. В результате проведенного анализа были показаны генетическая гетерогенность спорадических форм шизофрении, а также потенциальный вклад редких замен в генах, связанных с метаболизмом глутамата и инозитолфосфата, в развитие спорадических случаев шизофрении.

Об авторах

Т. В. Андреева

Центр генетики и генетических технологий, Московский государственный университет
им. М.В. Ломоносова; Институт общей генетики им. Н.И. Вавилова Российской академии наук

Автор, ответственный за переписку.
Email: an_tati@vigg.ru
Россия, 119234, Москва; Россия, 119991, Москва

Ф. А. Афанасьев

Институт общей генетики им. Н.И. Вавилова Российской академии наук

Email: evgeny.rogaev@umassmed.edu
Россия, 119991, Москва

Ф. Е. Гусев

Институт общей генетики им. Н.И. Вавилова Российской академии наук; Центр генетики и наук о жизни, Научно-технологический университет “Сириус”

Email: evgeny.rogaev@umassmed.edu
Россия, 119991, Москва; Россия, 354340, Краснодарский край, пгт. Сириус

А. Д. Патрикеев

Институт общей генетики им. Н.И. Вавилова Российской академии наук

Email: evgeny.rogaev@umassmed.edu
Россия, 119991, Москва

С. С. Кунижева

Институт общей генетики им. Н.И. Вавилова Российской академии наук; Центр генетики и наук о жизни, Научно-технологический университет “Сириус”

Email: evgeny.rogaev@umassmed.edu
Россия, 119991, Москва; Россия, 354340, Краснодарский край, пгт. Сириус

Е. И. Рогаев

Центр генетики и наук о жизни, Научно-технологический университет “Сириус”; Московский государственный университет им. М.В. Ломоносова; Медицинская школа Чан Массачусетского университета, департамент психиатрии

Автор, ответственный за переписку.
Email: evgeny.rogaev@umassmed.edu
Россия, 354340, Краснодарский край, пгт. Сириус; Россия, 119234, Москва; США, MA 01545, Шрусбери

Список литературы

  1. Owen M.J., Sawa A., Mortensen P.B. Schizophrenia // Lancet (London, England). 2016. V. 388. № 10039. P. 86. https://doi.org/10.1016/S0140-6736(15)01121-6
  2. Ripke S., Neale B.M., Corvin A. et al. Biological insights from 108 schizophrenia-associated genetic loci // Nature. 2014. V. 511. № 7510. P. 421–427. https://doi.org/10.1038/nature13595
  3. Goes F.S., Mcgrath J., Avramopoulos D. et al. Genome-wide association study of schizophrenia in Ashkenazi Jews // Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2015. V. 168. № 8. P. 649–659. https://doi.org/10.1002/AJMG.B.32349
  4. Ikeda M., Takahashi A., Kamatani Y. et al. Genome-wide association study detected novel susceptibility genes for schizophrenia and shared trans-populations diseases genetic effect // Schizophr. Bull. 2019. V. 45. № 4. P. 824–834. https://doi.org/10.1093/SCHBUL/SBY140
  5. Li Z., Chen J., Yu H. et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia // Nat. Genet. 2017. V. 49. № 11. P. 1576–1583. https://doi.org/10.1038/NG.3973
  6. Martin A.R., Daly M.J., Robinson E.B. et al. Predicting polygenic risk of psychiatric disorders // Biol. Psychiatry. 2019. V. 86. № 2. P. 97–109. https://doi.org/10.1016/J.BIOPSYCH.2018.12.015
  7. Kendler K.S. The schizophrenia polygenic risk score: to what does it predispose in adolescence? // JAMA Psychiatry. 2016. V. 73. № 3. P. 193–194. https://doi.org/10.1001/JAMAPSYCHIATRY.2015.2964
  8. Kato H., Kimura H., Kushima I. et al. The genetic architecture of schizophrenia: Review of large-scale genetic studies // J. Hum. Genet. 2023. V. 68. P. 175–182. https://doi.org/10.1038/S10038-022-01059-4
  9. Farrell M., Dietterich T.E., Harner M.K. et al. Increased prevalence of rare copy number variants in treatment-resistant psychosis // Schizophr. Bull. 2022. https://doi.org/10.1093/SCHBUL/SBAC175
  10. Wu Y., Liu X., Luo H. et al. Advanced paternal age increases the risk of schizophrenia and obsessive-compulsive disorder in a Chinese Han population // Psychiatry Res. 2012. V. 198. № 3. P. 353. https://doi.org/10.1016/J.PSYCHRES.2012.01.020
  11. Khachadourian V., Zaks N., Lin E. et al. Advanced paternal age and risk of schizophrenia in offspring–review of epidemiological findings and potential mechanisms // Schizophr. Res. 2021. V. 233. P. 72. https://doi.org/10.1016/J.SCHRES.2021.06.016
  12. Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform // Bioinformatics. 2009. V. 25. № 14. P. 1754–1760. https://doi.org/10.1093/bioinformatics/btp324
  13. McKenna A., Hanna M., Banks E. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data // Genome Res. 2010. V. 20. № 9. P. 1297–1303. https://doi.org/10.1101/gr.107524.110
  14. McLaren W., Gil L., Hunt S.E. et al. The ensembl variant effect predictor // Genome Biol. 2016. V. 17. № 1. P. 1–14. https://doi.org/10.1186/S13059-016-0974-4
  15. Adzhubei I.A., Schmidt S., Peshkin L. et al. A method and server for predicting damaging missense mutations // Nat. Methods. 2010. V. 7. № 4. P. 248–249. https://doi.org/10.1038/nmeth0410-248
  16. Kumar P., Henikoff S., Ng P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm // Nat. Protoc. 2009. V. 4. № 7. P. 1073–1081. https://doi.org/10.1038/nprot.2009.86
  17. Chiang C., Layer R.M., Faust G.G. et al. SpeedSeq: Ultra-fast personal genome analysis and interpretation // Nat. Methods. 2015. V. 12. № 10. P. 966–968. https://doi.org/10.1038/nmeth.3505
  18. Michaelson J.J., Sebat J. ForestSV: Structural variant discovery through statistical learning // Nat. Methods. 2012. V. 9. № 8. P. 819–821. https://doi.org/10.1038/nmeth.2085
  19. Antaki D., Brandler W.M., Sebat J. SV2: Accurate structural variation genotyping and de novo mutation detection from whole genomes // Bioinformatics. 2018. V. 34. № 10. P. 1774–1777. https://doi.org/10.1093/BIOINFORMATICS/BTX813
  20. Sanchez J.J., Phillips C., Børsting C. et al. A multiplex assay with 52 single nucleotide polymorphisms for human identification // Electrophoresis. 2006. V. 27. № 9. P. 1713–1724. https://doi.org/10.1002/elps.200500671
  21. Buniello A., Macarthur J.A.L., Cerezo M. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 // Nucl. Acids Res. 2019. V. 47. № D1. P. D1005–D1012. https://doi.org/10.1093/NAR/GKY1120
  22. Sudmant P.H., Rausch T., Gardner E.J. et al. An integrated map of structural variation in 2,504 human genomes // Nature. 2015. V. 526. № 7571. P. 75–81. https://doi.org/10.1038/nature15394
  23. Purcell S.M., Moran J.L., Fromer M. et al. A polygenic burden of rare disruptive mutations in schizophrenia // Nature. 2014. V. 506. № 7487. P. 185–190. https://doi.org/10.1038/nature12975
  24. Roach J.C., Glusman G., Smit A.F.A. et al. Analysis of genetic inheritance in a family quartet by whole genome sequencing // Science. 2010. V. 328. № 5978. P. 636. https://doi.org/10.1126/SCIENCE.1186802
  25. Brandler W.M., Antaki D., Gujral M. et al. Frequency and complexity of de novo structural mutation in autism // Am. J. Hum. Genet. 2016. V. 98. № 4. P. 667–679. https://doi.org/10.1016/J.AJHG.2016.02.018
  26. Robinson P., Zemo jtel T. Integrative genomics viewer (IGV): Visualizing alignments and variants // Computational Exome and Genome Analysis. 2018. P. 233–245. https://doi.org/10.1201/9781315154770-17
  27. Zhou J., Troyanskaya O.G. Predicting effects of noncoding variants with deep learning-based sequence model // Nat. Methods. 2015. V. 12. № 10. P. 931–934. https://doi.org/10.1038/nmeth.3547
  28. Kulakovskiy I.V., Vorontsov I.E., Yevshin I.S. et al. HOCOMOCO: Expansion and enhancement of the collection of transcription factor binding sites models // Nucl. Acids Res. 2016. V. 44. № D1. P. D116–D125. https://doi.org/10.1093/NAR/GKV1249
  29. Rosen N., Chalifa-Caspi V., Shmueli O. et al. GeneLoc: Exon-based integration of human genome maps // Bioinformatics. 2003. V. 19. Suppl. 1. https://doi.org/10.1093/BIOINFORMATICS/BTG1030
  30. Carbon S., Dietze H., Lewis S.E. et al. Expansion of the gene ontology knowledgebase and resources // Nucl. Acids Res. 2017. V. 45. № D1. P. D331–D338. https://doi.org/10.1093/NAR/GKW1108
  31. Rappaport N., Twik M., Plaschkes I. et al. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search // Nucl. Acids Res. 2017. V. 45. № D1. P. D877–D887. https://doi.org/10.1093/NAR/GKW1012
  32. Ashburner M., Ball C.A., Blake J.A. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium // Nat. Genet. 2000. V. 25. № 1. P. 25–29. https://doi.org/10.1038/75556
  33. Lonsdale J., Thomas J., Salvatore M. et al. The Genotype-Tissue Expression (GTEx) project // Nat. Genet. 2013. V. 45. № 6. P. 580–585. https://doi.org/10.1038/NG.2653
  34. Untergasser A., Cutcutache I., Koressaar T. et al. Primer3–new capabilities and interfaces // Nucl. Acids Res. 2012. V. 40. № 15. P. e115. https://doi.org/10.1093/nar/gks596
  35. Lappalainen I., Thusberg J., Shen B., Vihinen M. Genome wide analysis of pathogenic SH2 domain mutations // Proteins. 2008. V. 72. № 2. P. 779–792. https://doi.org/10.1002/PROT.21970
  36. Glessner J.T., Reilly M.P., Kim C.E. et al. Strong synaptic transmission impact by copy number variations in schizophrenia // Proc. Natl Acad. Sci. USA. 2010. V. 107. № 23. P. 10584–10589. https://doi.org/10.1073/PNAS.1000274107/SUPPL_FILE/PNAS.201000274SI.PDF
  37. De Bruijn S.E., Verbakel S.K., De Vrieze E. et al. Homozygous variants in KIAA1549, encoding a ciliary protein, are associated with autosomal recessive retinitis pigmentosa // J. Med. Genet. 2018. V. 55. № 10. P. 705–712. https://doi.org/10.1136/JMEDGENET-2018-105364
  38. Greenwood T.A., Lazzeroni L.C., Murray S.S. et al. Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia // Am. J. Psychiatry. 2011. V. 168. № 9. P. 930–946. https://doi.org/10.1176/APPI.AJP.2011.10050723
  39. Lohoff F.W. Genetic variants in the vesicular monoamine transporter 1 (VMAT1/SLC18A1) and neuropsychiatric disorders // Methods Mol. Biol. 2010. V. 637. P. 165–180. https://doi.org/10.1007/978-1-60761-700-6_9
  40. Sato D.X., Kawata M. Positive and balancing selection on SLC18A1 gene associated with psychiatric disorders and human-unique personality traits // EV. Lett. 2018. V. 2. № 5. P. 499–510. https://doi.org/10.1002/EVL3.81
  41. Schumacher J., Laje G., Jamra R.A. et al. The DISC locus and schizophrenia: Evidence from an association study in a central European sample and from a meta-analysis across different European populations // Hum. Mol. Genet. 2009. V. 18. № 14. P. 2719–2727. https://doi.org/10.1093/HMG/DDP204
  42. Nicodemus K.K., Callicott J.H., Higier R.G. et al. Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: Biological validation with functional neuroimaging // Hum. Genet. 2010. V. 127. № 4. P. 441–452. https://doi.org/10.1007/S00439-009-0782-Y/FIGURES/5
  43. Cryns K., Sivakumaran T.A., Van den Ouweland J.M.W. et al. Mutational spectrum of the WFS1 gene in Wolfram syndrome, nonsyndromic hearing impairment, diabetes mellitus, and psychiatric disease // Hum. Mutat. 2003. V. 22. № 4. P. 275–287. https://doi.org/10.1002/HUMU.10258
  44. Munshani S., Ibrahim E.Y., Domenicano I., Ehrlich B.E. The impact of mutations in wolframin on psychiatric disorders // Front. Pediatr. 2021. V. 9. https://doi.org/10.3389/FPED.2021.718132
  45. Zhao Q., Li T., Zhao X. et al. Rare CNVs and Tag SNPs at 15q11.2 are associated with schizophrenia in the Han Chinese population // Schizophr. Bull. 2013. V. 39. № 3. P. 712. https://doi.org/10.1093/SCHBUL/SBR197
  46. Kim N.S., Ringeling F.R., Zhou Y. et al. CYFIP1 dosages exhibit divergent behavioral impact via diametric regulation of NMDA receptor complex translation in mouse models of psychiatric disorders // Biol. Psychiatry. 2022. V. 92. № 10. P. 815–826. https://doi.org/10.1016/J.BIOPSYCH.2021.04.023
  47. Davenport E.C., Szulc B.R., Drew J. et al. Autism and schizophrenia-associated CYFIP1 regulates the balance of synaptic excitation and inhibition // Cell Rep. 2019. V. 26. № 8. P. 2037–2051. e6. https://doi.org/10.1016/J.CELREP.2019.01.092
  48. Cho H.P., Garcia-Barrantes P.M., Brogan J.T. et al. Chemical modulation of mutant mGlu1 receptors derived from deleterious GRM1 mutations found in schizophrenics // ACS Chem. Biol. 2014. V. 9. № 10. P. 2334–2346. https://doi.org/10.1021/CB500560H
  49. Ayoub M.A., Angelicheva D., Vile D. et al. Deleterious GRM1 mutations in schizophrenia // PLoS One. 2012. V. 7. № 3. P. c32849. https://doi.org/10.1371/JOURNAL.PONE.0032849
  50. Hirata Y., Zai C.C., Souza R.P. et al. Association study of GRIK1 gene polymorphisms in schizophrenia: case-control and family-based studies // Hum. Psychopharmacol. 2012. V. 27. № 4. P. 345–351. https://doi.org/10.1002/HUP.2233
  51. Costain G., Lionel A.C., Merico D. et al. Pathogenic rare copy number variants in community-based schizophrenia suggest a potential role for clinical microarrays // Hum. Mol. Genet. 2013. V. 22. № 22. P. 4485–4501. https://doi.org/10.1093/HMG/DDT297
  52. Hu W., Macdonald M.L., Elswick D.E., Sweet R.A. The glutamate hypothesis of schizophrenia: Evidence from human brain tissue studies // Ann. N. Y. Acad. Sci. 2015. V. 1338. № 1. P. 38–57. https://doi.org/10.1111/NYAS.12547
  53. Curtis D. Polygenic risk score for schizophrenia is more strongly associated with ancestry than with schizophrenia // Psychiatr. Genet. 2018. V. 28. № 5. P. 85–89. https://doi.org/10.1097/YPG.0000000000000206
  54. Landi I., Kaji D.A., Cotter L. et al. Prognostic value of polygenic risk scores for adults with psychosis // Nat. Med. 2021. V. 27. № 9. P. 1576–1581. https://doi.org/10.1038/s41591-021-01475-7
  55. Shimon H., Sobolev Y., Davidson M. et al. Inositol levels are decreased in postmortem brain of schizophrenic patients // Biol. Psychiatry. 1998. V. 44. № 6. P. 428–432. https://doi.org/10.1016/S0006-3223(98)00071-7
  56. Arranz B., Rosel P., San L. et al. Low baseline serotonin-2A receptors predict clinical response to olanzapine in first-episode schizophrenia patients // Psychiatry Res. 2007. V. 153. № 2. P. 103–109. https://doi.org/10.1016/J.PSYCHRES.2006.12.015

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (509KB)
3.

Скачать (310KB)
4.

Скачать (686KB)

© Т.В. Андреева, Ф.А. Афанасьев, Ф.Е. Гусев, А.Д. Патрикеев, С.С. Кунижева, Е.И. Рогаев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».