Periodic carbon structures on the surface of metallic nickel
- Autores: Kukovitsky E.F.1, L’vov S.G.1, Shustov V.A.1, Faizrakhmanov I.A.1
-
Afiliações:
- Kazan E.K. Zavoisky Physical-Technical Institute
- Edição: Volume 126, Nº 6 (2025)
- Páginas: 729-736
- Seção: СТРУКТУРА, ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ДИФФУЗИЯ
- URL: https://bakhtiniada.ru/0015-3230/article/view/322669
- DOI: https://doi.org/10.31857/S0015323025060111
- ID: 322669
Citar
Resumo
Using the example of metallic nickel, the possibility of synthesizing periodic carbon structures by chemical vapor deposition (CVD) without applying an additional catalyst to the surface of metals that are catalytically active in hydrocarbon pyrolysis processes has been experimentally demonstrated. Planar and non-planar structures of sub-millimeter (~500×500 μm2) scale have been obtained on polycrystalline nickel substrates. The surface structuring of nickel substrates was performed by local modification of the surface catalytic properties, as well as by forming the surface relief by the method of plastic surface deformation using a template. For planar structures, the modification of the surface properties was carried out by ion bombardment through a mask. For non-planar structures, the local activation of the passivated surface was carried out by mechanical grinding-polishing. The obtained structures contain two forms of carbon: turbo-substrate graphite and carbon nanotubes. It has been established that both forms of carbon can be produced in a single CVD process.
Palavras-chave
Sobre autores
E. Kukovitsky
Kazan E.K. Zavoisky Physical-Technical Institute
Email: kuk@kfti.knc.ru
Kazan, 420029 Russia
S. L’vov
Kazan E.K. Zavoisky Physical-Technical Institute
Email: kuk@kfti.knc.ru
Kazan, 420029 Russia
V. Shustov
Kazan E.K. Zavoisky Physical-Technical Institute
Email: kuk@kfti.knc.ru
Kazan, 420029 Russia
I. Faizrakhmanov
Kazan E.K. Zavoisky Physical-Technical Institute
Autor responsável pela correspondência
Email: kuk@kfti.knc.ru
Kazan, 420029 Russia
Bibliografia
- Kim Y., Kuljanishvili I. Recent advances in carbon nanotube patterning technologies for device applications // Frontiers in Carbon. 2023. V. 2. P. 1–10.
- Yang P.C., Zhu W., Glass J.T. Nucleation of oriented diamond films on nickel substrates // J. Mater. Res. 1993. V. 8. P. 1773–76.
- Presland A.E.B., Walker P.L. Growth of single crystal graphite by pyrolysis of acetylene over metals // Carbon. 1969. V. 7. P. 1–8.
- Phillips J., Shiina T., Nemer M., Lester K. Graphitic Structures by Design // Langmuir. 2006. V. 22. P. 9694–9703.
- Oshima С., Nagashima A. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces // J. Phys.: Condens. Matter. 1997. V. 9. P. 1–20.
- Yu Q., Lian J., Siriponglert S., Li H., Chen Y.P., Pei Sh.-Sh. Graphene segregated on Ni surfaces and transferred to insulators // Appl. Phys. Lett. 2008. V. 93. P. 113103.
- Kukovitsky E.F., L’vov S.G., Sainov N.A., Shustov V.A. CVD growth of carbon nanotube films on nickel substrates // Appl. Surface Sci. 2003. V. 215. P. 201–208.
- Lei T., Mao J., Liu X., Pathak A.D., Shetty Sh., van Bavel A.P., Xie L., Gao R., Ren P., Luo D., Liu Q., Ma W., Xu Ch., Wen X. Carbon Deposition and Permeation on Nickel Surfaces in Operando Conditions: A Theoretical Study // J. Phys. Chem. C. 2021. V. 125. P. 7166–7177.
- Kukovitsky E.F., L’vov S.G. Increased Carbon Chemical Vapor Deposition and Carbon Nanotube Growth on Metal Substrates in Confined Spaces // ECS J. Solid State Sci. Techn. 2013. V. 2(1). P. M1–M8.
- Свойства элементов. Справочник / Под ред. М.Е. Дрица. Москва: Металлургия, 1985. 671 с.
- Kharatyan S.L., Chatilyan H.A., Manukyan K.V. Kinetics and Mechanism of Nickel Oxide Reduction by Methane // J. Phys. Chem. C. 2019. V. 123. P. 21513−21521.
- Altay M.C., Eroglu S. Use of Waste Polyethylene as a Source of Reducing Agent for Metal Oxide Reduction: A Case Study on NiO // JOM. 2019. V. 71. P. 2338–2344.
- Chai S.P., Zein S.H.S., Mohamed A.R. Synthesizing carbon nanotubes and carbon nanofibers over supported-nickel oxide catalysts via catalytic decomposition of methane // Diamond & Related Materials. 2007. V. 16. P. 1656–1664.
- Musatov A.L., Kiselev N.A., Zakharov D.N., Kukovitsky E.F., Zhbanov A.I., Izrael’yants K.R., Chirkova E.G. Field electron emission from nanotube carbon layers grown by CVD process // Appl. Surface Sci. 2001. V. 183. P. 111–119.
- Kiselev N.A., Sloan J., Zakharov D.N., Kukovitsky E.F., Hutchison J.L., Hammer J., Kotosonov A.S. Carbon nanotubes from polyethylene precursors: structure and structural changes caused by thermal and chemical treatment revealed by HREM // Carbon. 1998. V. 36. P. 1149–1157.
- Banerjee B.C., Hirt T.J., Walker P.L. Pyrolytic carbon formation from carbon suboxide // Nature. 1961. V. 192. P. 450–451.
- Young D.J. Carburization and Metal Dusting, In: Shreir's Corrosion / Eds T.J.A. Richardson, R. Cottis, R. Lindsay, S. Lyon, D.J.D. Scantlebury, F.H. Stott, M.J. Graham // Elsevier Science. 2010. V. 1. P. 272–303.
- Mavrikakis M., Hammer B., Nørskov J.K. Effect of Strain on the Reactivity of Metal Surfaces // Phys. Rev. Lett. 1998. V. 81. P. 2819–2822.
- Gsell M., Jakob P., Menzel D. Effect of Substrate Strain on Adsorption // Science. 1998. V. 280. P. 717–720.
- Kukovitsky E.F., Lvov S.G., Shustov V.A., Lyadov N.M. Surface Integrity and Carbon Chemical Vapor Deposition on Nickel Foil: Surface Abrasive Treatment // ECS J. Solid State Sci. Techn. 2015. V. 4. P. M51–M59.
- White E., Schlereth C., Lepple M., Hattendorf H., Nowak B., Galetz M.C. Influence of surface treatment on the metal dusting behavior of alloy 699 XA // Mater. Corrosion. 2023. V. 74. P. 190–196.
Arquivos suplementares
