BERRY PHASE AND MAGNETOTRANSPORT EVIDENCES FOR NONTRIVIAL TOPOLOGY IN THE ELECTRONIC BAND STRUCTURE OF HGSE
- Authors: Bobin S.B.1, Lonchakov A.T.1
-
Affiliations:
- M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
- Issue: Vol 126, No 5 (2025)
- Pages: 535-546
- Section: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://bakhtiniada.ru/0015-3230/article/view/308984
- DOI: https://doi.org/10.31857/S0015323025050038
- EDN: https://elibrary.ru/vczutd
- ID: 308984
Cite item
Abstract
Longitudinal and transverse magnetotransport effects were investigated in a monocrystalline HgSe sample (electron concentration n = 4 × 1016 cm−3, electron mobility µ = 1.2 × 10⁵ cm² V−1 s−1) under a planar electric and magnetic field configuration. Analysis of Shubnikov-de Haas oscillations in both longitudinal and transverse magnetoresistance yielded data on the half-filling of the zeroth Landau level and revealed a nontrivial Berry phase. These signatures of the relativistic nature of the HgSe electronic spectrum are complemented by two key magnetotransport signatures of the chiral anomaly: the chiral magnetic effect and the planar Hall effect. Collectively, these findings indicate the existence of a Weyl semimetal electronic topological phase in HgSe — an isotropic, nonmagnetic material characterized by strong spin-orbit coupling.
Keywords
About the authors
S. B. Bobin
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Email: bobin@imp.uran.ru
Ekaterinburg, 620108 Russia
A. T. Lonchakov
M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences
Author for correspondence.
Email: bobin@imp.uran.ru
Russian Federation, Ekaterinburg, 620108 Russia
References
- Ortmann F., Roche S., Valenzuela S.O., Molenkamp L.W. Topological Insulators Fundamentals and Perspectives // Wiley-VCH Verlag GmbH. 2015.
- Armitage N.P., Mele E.J., Vishwanath A. Weyl and Dirac Semimetals in Three Dimensional Solids // Rev. Modern Phys. 2018. V. 90. P. 015001.
- Yan B., Felser C. Topological Materials: Weyl Semimetals // Annual Rev. Condensed Matter Phys. 2017. V. 8. P. 337–354.
- Nielsen H.B., Ninomiya M. Absence of neutrinos on a lattice // Nuclear Phys. B. 1981. V. 185. P. 20–40.
- Wehling T.O., Black-Schaffer A.M., Balatsky A.V. Dirac materials // Adv. Phys. 2014. V. 63. P. 1–76.
- Nielsen H.B., Ninomiya M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal // Phys. Letters B. 1983. V. 130. P. 389.
- Weyl H. Elektron und Gravitation // Zeitschrift Phys. 1929. V. 56. P. 330–352.
- Wan X., Turner A.M., Vishwanath A., Savrasov S.Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates // Phys. Rev. B. 2011. V. 83. P. 205101.
- Murakami S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase // New J. Phys. 2007. V. 9. P. 356–356.
- Huang S.-M., Xu S.-Y., Belopolski I., Lee C.-C., Chang G., Wang B., Alidoust N., Bian G., Neupane M., Zhang C., Jia S., Bansi A., Lin H., Hasan M.Z. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class // Nature Communications. 2015. V. 6.
- Bevan T.D.C., Manninen A.J., Cook J.B., Hook J.R., Hall H.E., Vachaspati T., Volovik G.E. Momentum creation by vortices in superfluid 3He as a model of primordial baryogenesis // Nature. 1997. V. 386. P. 689–692.
- Son D.T., Spivak B.Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals // Phys. Rev. B. 2013. V. 88. P. 104412.
- Kharzeev D.E. The Chiral Magnetic Effect and anomaly-induced transport // Progress in Particle and Nuclear Physics. 2014. V. 75. P. 133–151.
- Burkov A.A. Chiral anomaly and transport in Weyl metals // J. Phys.: Condensed Matter. 2015. V. 27. P. 113201.
- Burkov A.A. Giant planar Hall effect in topological metals // Phys. Rev. B. 2017. V. 96. P. 041110.
- Nandy S., Sharma G., Taraphder A., Tewari S. Chiral Anomaly as the Origin of the Planar Hall Effect in Weyl Semimetals // Phys. Rev. Letters. 2017. V. 119. P. 176804.
- Yang S.-H. Spintronics on chiral objects // Appl. Phys. Letters. 2020. V. 116. P. 120502.
- Lonchakov A.T., Bobin S.B., Deryushkin V.V., Okulov V.I., Govorkova T.E., Neverov V.N. Peculiar behavior of magnetoresistance in HgSe single crystal with low electron concentration // Appl. Phys. Letters. 2018. V. 112. P. 082101.
- Bobin S.B., Lonchakov A.T., Deryushkin V.V., Neverov V.N. Nontrivial topology of bulk HgSe from the study of cyclotron effective mass, electron mobility and phase shift of Shubnikov-de Haas oscillations // J. Phys.: Condensed Matter. 2019. V. 31. P. 115701.
- Lonchakov A.T., Bobin S.B., Deryushkin V.V., Neverov V.N. Observation of quantum topological Hall effect in the Weyl semimetal candidate HgSe // J. Phys.: Condensed Matter. 2019. V. 31. P. 405706.
- Lonchakov A.T., Bobin S.B. Positive longitudinal magnetoconductivity induced by chiral magnetic effect in mercury selenide // J. Phys.: Condensed Matter. 2023. V. 35. P. 065501.
- Бобин С.Б., Лончаков А.Т. Гигантский планарный эффект Холла в ультрачистом монокристаллическом образце селенида ртути // Письма в ЖЭТФ. 2023. V. 118. P. 506–512.
- Lonchakov A.T., Bobin S.B. Quantum linear magnetoresistance and magnetic-field-induced metal–insulator transition in the Weyl semimetal candidate HgSe // J. Appl. Phys. 2024. V. 135. P. 235703.
- Tsidilkovski I.M. Electron Spectrum of Gapless Semiconductors. Berlin–New York: Springer, 1996.
- Liu Z.K., Yang L.X., Sun Y., Zhang T., Peng H., Yang H.F., Chen C., Zhang Y., Guo Y.F., Prabhakaran D., Schmidt M., Hussain Z., Mo S.-K., Felser C., Yan B., Chen Y.L. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family // Nature Mater. 2015. V. 15. P. 27–31.
- Starostin A.A., Shangin V.V., Lonchakov A.T., Kotov A.N., Bobin S.B. Laser Pump-Probe Fiber-Optic Technique for Characterization of Near-Surface Layers of Solids: Development and Application Prospects for Studying Semiconductors and Weyl Semimetals // Annalen der Physik. 2020. V. 532. P. 1900586.
- Lonchakov A.T., Starostin A.A., Shangin V.V., Bobin S.B., Kotov A.N. Study of the mercury chalcogenide single crystals by means of a combination of laser pump-probe thermoreflectance technique with Fabry–Perot interferometer // J. Appl. Phys. 2023. V. 133. P. 205701.
- Lehoczky S.L., Broerman J.G., Nelson D.A., Whitsett C.R. Temperature-dependent electrical properties of HgSe // Phys. Rev. B. 1974. V. 9. P. 1598–1620.
- Zhang C.-L., Xu S.-Y., Belopolski I., Yuan Z., Lin Z., Tong B., Bian G., Alidoust N., Lee C.-C., Huang S.-M., Chang T.-R., Chang G., Hsu C.-H., Jeng H.-T., Neupane M., Sanchez D.S., Zheng H., Wang J., Lin H., Zhang C., Lu H.-Z., Shen S.-Q., Neupert T., Zahid Hasan M., Jia S. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal // Nature Comm. 2016. V. 7. P. 10735.
- Arnold F., Shekhar C., Wu S.-C., Sun Y., Reis R.D. dos, Kumar N., Naumann M., Ajeesh M.O., Schmidt M., Grushin A.G., Bardarson J.H., Baenitz M., Sokolov D., Borrmann H., Nicklas M., Felser C., Hassinger E., Yan B. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP // Nature Comm. 2016. V. 7. P. 11615.
- Hu J., Liu J.Y., Graf D., Radmanesh S.M.A., Adams D.J., Chuang A., Wang Y., Chiorescu I., Wei J., Spinu L., Mao Z.Q. π Berry phase and Zeeman splitting of Weyl semimetal TaP // Scientific Reports. 2016. V. 6. P. 18674.
- Huang X., Zhao L., Long Y., Wang P., Chen D., Yang Z., Liang H., Xue M., Weng H., Fang Z., Dai X., Chen G. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs // Phys. Rev. X. 2015. V. 5. P. 031023.
- Shekhar C., Nayak A.K., Sun Y., Schmidt M., Nicklas M., Leermakers I., Zeitler U., Skourski Y., Wosnitza J., Liu Z., Chen Y., Schnelle W., Borrmann H., Grin Y., Felser C., Yan B. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP // Nature Phys. 2015. V. 11. P. 645.
- Li C.-Z., Wang L.-X., Liu H., Wang J., Liao Z.-M., Yu D.-P. Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires // Nature Comm. 2015. V. 6. P. 10137.
- Wang Z., Zheng Y., Shen Z., Lu Y., Fang H., Sheng F., Zhou Y., Yang X., Li Y., Feng C., Xu Z.-A. Helicity-protected ultrahigh mobility Weyl fermions in NbP // Phys. Rev. B. 2016. V. 93. P. 121112.
- Du J., Wang H., Chen Q., Mao Q., Khan R., Xu B., Zhou Y., Zhang Y., Yang J., Chen B., Feng C., Fang M. Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP // Sci. China Phys. Mechanics & Astronomy. 2016. V. 59. P. 657406.
- Liang T., Gibson Q., Ali M.N., Liu M., Cava R.J., Ong N.P. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2 // Nature Mater. 2014. V. 14. P. 280–284.
- Zhang C.-L., Yuan Z., Jiang Q.-D., Tong B., Zhang C., Xie X.C., Jia S. Electron scattering in tantalum monoarsenide // Phys. Rev. B. 2017. V. 95. P. 085202.
- Jiang Q.-D., Jiang H., Liu H., Sun Q.-F., Xie X.C. Chiral wave-packet scattering in Weyl semimetals // Phys. Rev. B. 2016. V. 93. P. 195165.
- Sinova J., Valenzuela S.O., Wunderlich J., Back C.H., Jungwirth T. Spin Hall effects // Rev. Modern Phys. 2015. V. 87. P. 1213–1260.
- Willardson R.K. Semiconductors and Semimetals. Burlington: Elsevier, 1967.
- Luk’yanchuk I.A., Kopelevich Y. Phase Analysis of Quantum Oscillations in Graphite // Phys. Rev. Letters. 2004. V. 93. P. 166402.
- Luk’yanchuk I.A., Kopelevich Y. Dirac and Normal Fermions in Graphite and Graphene: Implications of the Quantum Hall Effect // Phys. Rev. Letters. 2006. V. 97. P. 256801.
- Mikitik G.P., Sharlai Y.V. Berry Phase and de Haas–van Alphen Effect in LaRhIn5 // Phys. Rev. Letters. 2004. V. 93. P. 106403.
- Zhang Y., Tan Y.-W., Stormer H.L., Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene // Nature. 2005. V. 438. P. 201–204.
- Taskin A.A., Ando Y. Berry phase of nonideal Dirac fermions in topological insulators // Phys. Rev. B. 2011. V. 84. P. 035301.
- Xiong J., Petersen A.C., Qu D., Hor Y.S., Cava R.J., Ong N.P. Quantum oscillations in a topological insulator Bi2Te2Se with large bulk resistivity (6 Ω cm) // Physica E: Low-dimensional Systems and Nanostructures. 2012. V. 44. P. 917–920.
- Sacépé B., Oostinga J.B., Li J., Ubaldini A., Couto N.J.G., Giannini E., Morpurgo A.F. Gate-tuned normal and superconducting transport at the surface of a topological insulator // Nature Comm. 2011. V. 2. P. 575.
- Цидильковский И.М. Электроны и дырки в полупроводниках. М.: Издательство “Наука”, 1972.
- Lifshitz I.M., Kosevich L.M. On the theory of the Shubnikov-de Haas effect // Soviet Phys. JETP. 1958. V. 6. P. 67–77.
- Li Q., Kharzeev D.E., Zhang C., Huang Y., Pletikosić I., Fedorov A.V., Zhong R.D., Schneeloch J.A., Gu G.D., Valla T. Chiral magnetic effect in ZrTe5 // Nature Phys. 2016. V. 12. P. 550–554.
- Spivak B.Z., Andreev A.V. Magnetotransport phenomena related to the chiral anomaly in Weyl semimetals // Phys. Rev. B. 2016. V. 93. P. 085107.
- D’yakonov M., Perel V. Spin relaxation of conduction electrons in noncentrosymmetric semiconductors // Soviet Phys. Solid State. 1972. V. 13. P. 3023–3026.
- Dietl T., Szymańska W. Electron scattering in HgSe // J. Phys. Chem. Solids. 1978. V. 39. P. 1041–1057.
- Elliott R.J. Theory of the Effect of Spin-Orbit Coupling on Magnetic Resonance in Some Semiconductors // Phys. Rev. 1954. V. 96. P. 266–279.
- Yafet Y. g Factors and Spin-Lattice Relaxation of Conduction Electrons // Solid State Phys. 1963. V. 14. P. 1–98.
Supplementary files
