Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 53, № 4 (2017)

Article

New directions in the area of modern energetic polymers: An overview

Badgujar D., Talawar M., Zarko V., Mahulikar P.

Аннотация

Energetic polymers containing nitro, nitrato, and azido groups release high energy during combustion and thereby increase the performance of the systems. A number of energetic polymers have been found suitable for use as binders in high-performance propellant and explosive formulations. This review describes the synthetic and application aspects of various modern energetic polymers for explosive formulations and propellants.

Combustion, Explosion, and Shock Waves. 2017;53(4):371-387
pages 371-387 views

Experimental and numerical investigation of the chemical reaction kinetics in H2/CO syngas flame at a pressure of 1–10 atm

Knyazkov D., Bolshova T., Dmitriev A., Shmakov A., Korobeinichev O.

Аннотация

The structure of a premixed stoichiometric flame of syngas (H2/CO/O2/Ar = 0.0667/0.0667/0.0667/0.8) stabilized on a flat burner at a pressure of 5 atm was studied experimentally and by numerical simulation. The mole fraction profiles of the reactants (H2, CO, and O2) and the major (H2O and CO2) and intermediate (O, OH, HO2, and H2O2) combustion products were measured by molecular beam mass spectrometry. The experimental data were compared with those calculated using three detailed chemical-kinetic mechanisms proposed in the literature for oxidation of a H2/CO mixture. Good agreement was found between the results of the experiment and simulation. Calculations of the structure of the flame of the same composition at a pressure of 1 and 10 atm were performed to establish the effect of the pressure on the chemical reaction kinetics in the syngas flame. The results were explained by kinetic analysis of the mechanisms.

Combustion, Explosion, and Shock Waves. 2017;53(4):388-397
pages 388-397 views

Numerical and experimental study of ignition of a two-phase fuel composition (ethanol + air) in a resonance gas-dynamic system

Aref’ev K., Voronetskii A., Il’chenko M., Suchkov S.

Аннотация

A mathematical model, laboratory setup description, and results of a numericalexperimental study of specific features of an unsteady two-phase flow of the ethanol–air mixture in the duct of a resonance gas-dynamic system (RGS) are presented. The basic specific features of ignition of the fuel mixture in the resonance cavity are detected. The conditions of ignition are determined, and the ignition delay time of the fuel composition in the RGS is estimated. The data obtained in this study can be used for modeling physical and chemical processes and for choosing liquid fuel injection modes satisfying the conditions of ignition of two-phase fuel mixtures in the RGS.

Combustion, Explosion, and Shock Waves. 2017;53(4):398-405
pages 398-405 views

Chemical reactor network application to predict the emission of nitrogen oxides in an industrial combustion chamber

Nguyen T.

Аннотация

A new chemical reactor network model is developed to predict the emission of nitrogen oxides in an industrial combustion chamber operating on liquefied petroleum gas. The boundary conditions and operating parameters used for this model are typical operating conditions of an industrial combustion chamber. The global mechanism is developed by GRI-MECH 3.0 in the UW code. The model predictions are compared with experimental data. The chemical reactor network model provides an accurate estimation of nitrogen oxide emission.

Combustion, Explosion, and Shock Waves. 2017;53(4):406-410
pages 406-410 views

Modeling the solid phase reaction distribution in the case of conjugate heat exchange

Aligozhina K., Knyazeva A.

Аннотация

This paper describes the model of the propagation of solid phase exothermic reaction in a layer between inert materials with various thermal and physical properties. The model is implemented numerically. The relationships between the ignition time and the model parameters, as well as the behavior of some energy characteristics under various conditions in time (heat reserve in the heated layer and excess of enthalpy) are investigated. The influence of the thermal and physical properties of inert materials on the temperature distribution in the sample in stationary and nonstationary regimes is demonstrated.

Combustion, Explosion, and Shock Waves. 2017;53(4):411-419
pages 411-419 views

Estimating the self-diffusion and mutual diffusion coefficients of binary mixtures on the basis of a modified van der Waals model

Medvedev A.

Аннотация

The previously proposed model is used to determine the values of the self-diffusion coefficient of He, Ne, Ar, Kr, Xe, H2, D2, N2, O2, CO2, NH3, and CH4 in the liquid and dense gaseous states, which were compared with the experimental data obtained at a pressure of ≈200 MPa and a temperature of ≈500 K. The calculations are carried out with the use of the equation of state of these substances in the form of a modified van der Waals model. The self-diffusion model was generalized for the case of mutual diffusion in binary mixtures, which is based on the modified model of the van der Waals state equation for mixtures. The modeled coefficient of mutual diffusion for a great number of binary mixtures of the above-mentioned individual substances is determined, and the results are compared with the known data. Without special calibration for the experiment, the model correctly predicts the relationship of the self-diffusion and mutual diffusion coefficients (with their variation by several orders of magnitude in the case where the density changes from gaseous to liquid) with both pressure and temperature. For most substances considered in the paper, the maximum deviations of calculations from the experiment do not exceed 30–50%.

Combustion, Explosion, and Shock Waves. 2017;53(4):420-432
pages 420-432 views

Mathematical modeling of propagation of explosion waves and their effect on various objects

Valger S., Fedorova N., Fedorov A.

Аннотация

Results of modeling the propagation of a shock wave formed by an explosion of a spherical charge of a high explosive in a semi-infinite space bounded by a flat substrate are reported. Problems of the action of such a wave on objects rigidly fixed on the substrate (a single prism and a set of prisms simulating an urban area) are considered. The computations are performed in a three-dimensional inviscid formulation with the use of the AUTODYN module of the ANSYS commercial software package. These numerical predictions are compared with experimental data on the static pressure measured by sensors mounted on the prism walls. It is demonstrated that an adequate description of the unsteady flow pattern formed around the obstacles mounted on the substrate can be provided. Based on these numerical data, the intensity of the shock wave action on various objects is estimated.

Combustion, Explosion, and Shock Waves. 2017;53(4):433-443
pages 433-443 views

Role of particle collisions in shock wave interaction with a dense spherical layer of a gas suspension

Khmel’ T., Fedorov A.

Аннотация

The problem of interaction of an expanding spherical shock wave with a layer of particles is considered within the framework of the model of mechanics of continuous media with due allowance for granular pressure in the dense gas suspension. The influence of particle collisions on the shock wave expansion process is analyzed. Generation of collisional pressure and formation of shock wave structures in the gas suspension are found to be the governing factors of motion of the cloud of particles at the initial stage.

Combustion, Explosion, and Shock Waves. 2017;53(4):444-452
pages 444-452 views

Detonation combustion of lignite with titanium dioxide and water additives in air

Bykovskii F., Vedernikov E., Zholobov Y.

Аннотация

The influence of mineral additives (6.2–70%) and water (15–54%) to lignite on the possibility of its burning in an air flow in a continuous detonation regime in a radial vortex combustor 500 mm in diameter is studied. A syngas with a composition CO + 3H2 is used for transporting the coal mixture and for promoting the chemical reaction. It is shown that regimes of continuous spin detonation, conventional combustion, and pulsed combustion may occur depending on the amounts of the mineral (TiO2) added to coal, water, and syngas. The boundaries between the domains of existence of detonation and combustion are determined in the coordinates of the ratio of the syngas flow rate to the rate of consumption of the combustible portion of coal and the mineral component of coal and water. It is seen that the continuous spin detonation regime persists if the mineral additive fraction in the lignite mixture is up to 65% and the water fraction is smaller than 30%. It is also demonstrated that the syngas flow rate should be increased with increasing mineral additive fraction and increasing coal humidity in order to ensure burning of the combustible component of syngas.

Combustion, Explosion, and Shock Waves. 2017;53(4):453-460
pages 453-460 views

Detonation velocity of mechanically activated mixtures of ammonium perchlorate and aluminum

Shevchenko A., Dolgoborodov A., Kirilenko V., Brazhnikov M.

Аннотация

The detonation properties of mechanically activated mixtures of ammonium perchlorate and aluminum were studied. The deflagration-to-detonation transition for low-density charges was investigated. Dependences of the detonation velocity of pressed charges with different types of aluminum on the activation time, density, and diameter of the charges were obtained. For compositions with nanosized aluminum, it is was found that the detonation velocity depends nonmonotonically on the inverse charge diameter and remains almost unchanged in a certain range of charge diameters. It is shown that the joint use of mechanical activation and nanosized components of the composite explosive significantly increases the detonability, reduces the critical diameter, and shifts the maximum of the detonation velocity as a function of density to higher charge densities.

Combustion, Explosion, and Shock Waves. 2017;53(4):461-470
pages 461-470 views

Numerous experiment on impact compression of a mixture of graphite and water

Shurshalov L., Charakhch’yan A., Khishchenko K.

Аннотация

This paper describes the problem of the behavior of a mixture of small graphite particles with water in the conditions of shock-wave action at a pressure of 32 GPa and a temperature of up to 1200–1600 K. Graphite particles at these pressures and temperatures are capable of transforming into cubic diamonds or at least into their hexagonal form that is lonsdaleite. It is shown that, for sufficiently small graphite particles of the order of 1 μm, their mixture with water for about 10 μs can heat up to the above-mentioned temperatures and undergo phase transformation, remain in those conditions for about 50 μs, and then efficiently cool down during the next 50 μs to the temperatures below 300 K, while remaining in the diamond phase.

Combustion, Explosion, and Shock Waves. 2017;53(4):471-478
pages 471-478 views

Formation of a high-velocity particle flow from shaped charges with a liner consisting of a hemisphere and a degressive-thickness cylinder

Fedorov S., Ladov S., Nikol’skaya Y., Baskakov V., Baburin M., Kurepin A., Gorbunkov A., Pirozerskii A.

Аннотация

Particle flows formed from shaped charges with a combined steel liner consisting of a hemisphere and a cylinder with a hemispherical part of degressive thickness (decreasing from top to bottom) were investigated by flash radiography. It has been found experimentally that the change from a constant to a degressive thickness of the hemispherical part increases the velocity of the head part of the liner jet formed during its compression, which is subsequently separated upon collapse of the cylindrical part. The maximum particle velocity obtained as a result of separation in the experiments was 8.6 km/s.

Combustion, Explosion, and Shock Waves. 2017;53(4):479-482
pages 479-482 views

Penetration of double-layer targets with an outer ceramic layer and optimization of their structure

Kobylkin I.

Аннотация

Analytical formulas for calculating the maximum velocity of penetration of doublelayer cermet and ceramic/organic-plastic targets are obtained taking into account the structural characteristics of the target and the physical and mechanical properties of the projectile and target materials. Using these formulas, the ballistic resistance of targets was studied and the possibility of optimizing their structure was shown. The results agree qualitatively with available experimental data. The optimal relative thickness of the ceramic layer which provides maximum penetration velocity was determined at areal densities of the target of 30–50 kg/m2 for different substrate materials. It is found that these velocity values depend weakly on the areal density of the target and are mainly determined by the properties of the substrate material.

Combustion, Explosion, and Shock Waves. 2017;53(4):483-489
pages 483-489 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».