Anther formation in some species of genus Echeveria (Crassulaceae)
- Authors: Anisimova G.M.1, Shamrov I.I.1,2
-
Affiliations:
- Komarov Botanical Institute RAS
- Herzen State Pedagogical University of Russia
- Issue: Vol 110, No 7 (2025)
- Pages: 694-714
- Section: COMMUNICATIONS
- URL: https://bakhtiniada.ru/0006-8136/article/view/308725
- DOI: https://doi.org/10.31857/S0006813625070052
- EDN: https://elibrary.ru/hmbhmi
- ID: 308725
Cite item
Abstract
Echeveria species are characterized by both common and specific features in the anther structure. They, like most members of the Crassulaceae family, have basic characteristics associated with reproductive processes. These include: tetrasporangiate anther, parietal tapetum, predominantly tetrahedral tetrads of microspores, 2-celled and 3-colporate mature pollen grains. The studied species form different alliances: according to the anther shape – almost isobilateral (symmetrical) in E. gibbiflora and E. pulvinata and asymmetrical in E. puchella and E. pulidonis, which correlates with the contour of the microsporangium cavities; according to the shape of the layer of cells with thickened walls around the vascular bundle of the connective tissue – ring-shaped in E. gibbiflora and E. pulvinata and an oval in E. puchella and E. pulidonis; according to the tapetum structure – irregularly 2-layered in E. gibbiflora and E. pulidonis, 2-layered in E. pulvinata, and single-layered in E. puchellia; according to time of destruction of the walls between tapetum cells – at the stage of microspore tetrads in E. gibbiflora, E.puchella and E. pulvinata, of single microspores in E. pulidonis; according to the endothecium structure – cells begin to increase radially at the beginning of meiosis in E. pulvinata, at the tetrad stage in E. puchella, at the tetrad and early single microspore stages in E. gibbiflora and E. pulidonis. Some characters (symmetrical anthers with a 4-rayed connective tissue) reveal similarities with species of the genera Aeonium, Monanthes and Sedum. Based on the presence of fibrous thickenings in the cells (in addition to the typical layer based on the subepidermis of the microsporangium wall, additional layers appear in the connective tissue), Crassula joins the above-mentioned genera. The study revealed a mosaic distribution of anther structural traits in the genus Echeveria. It is likely that the studied species are characterized by a complex of multidirectional signs. The species form groupings depending on the analyzed properties, while each species does not have a set of traits inherent only to it. This conclusion does not contradict molecular genetic studies. Despite the similarity of some structural features, the species we studied belong to different clades of the “Echeveria group”.
Keywords
About the authors
G. M. Anisimova
Komarov Botanical Institute RAS
Author for correspondence.
Email: galina0353@mail.ru
Prof. Popov Str., 2, St. Petersburg, 197022, Russia
I. I. Shamrov
Komarov Botanical Institute RAS; Herzen State Pedagogical University of Russia
Email: shamrov52@mail.ru
Prof. Popov Str., 2, St. Petersburg, 197022, Russia; Moika River Emb., 48, St. Petersburg, 191186, Russia
References
- [Anisimova] Анисимова Г.М. 2016. Строение пыльника, микроспорогенез и пыльцевое зерно у Kalanchoe nyikae (Crassulaceae). – Бот. журн. 101(12): 1378–1389.
- [Anisimova] Анисимова Г.М. 2020. Развитие и строение пыльника Sedum kamtschaticum и Sedum palmeri (Crassulaceae). – Бот. журн. 105(11): 1093–1110. https://doi.org/10.31857/S0006813620090021
- [Anisimova, Shamrov] Анисимова Г.М., Шамров И.И. 2018. Морфогенез гинецея и семязачатка у Kalanchoe laxiflora и K. tubiflora (Crassulaceae). – Бот. журн. 103(6): 675–694. https://doi.org/10.1134/S0006813618060017
- [Anisimova, Shamrov] Анисимова Г.М., Шамров И.И. 2021a. Строение гинецея и семязачатка у Sedum kamtschaticum и Sedum palmeri (Crassulaceae). – Бот. журн. 106(4): 50–68. https://doi.org/10.31857/S000681362104002
- [Anisimova, Shamrov] Анисимова Г.М., Шамров И.И. 2021b. Сравнительный анализ строения гинецея и семязачатка у некоторых видов Sedum и Kalanchoe (Crassulaceae). – Бюл. Главн. бот. сада. 4: 31–39. https://doi.org/10.25791/BBGRAN.04.2021.1097
- [Anisimova, Shamrov] Анисимова Г.М., Шамров И.И. 2022a. Формирование стенки пыльника у Aeonium balsamiferum и A. ciliatum (Crassulaceae). – Бот. журн. 2022a. 107(6): 42–62. https://doi.org/10.31857/S0006813622060035
- Anisimova G.M., Shamrov I.I. 2022b. Anther wall formation in Aeonium balsamiferum and A. ciliatum (Crassulaceae). – Doklady Biological Sciences. 506(1): 160–171. https://doi.org/10.1134/S0012496622050027
- [Anisimova, Shamrov] Анисимова Г.М., Шамров И.И. 2023. Строение пыльника у Crassula ericoides, C. intermedia и C. multicava (Crassulaceae). – Бот. журн. 108(4): 22–36.
- EDN: OZEEKB. https://doi.org/10.31857/S0006813623040026
- [Anisimova, Shamrov] Анисимова Г.М., Шамров И.И. 2024. Формирование пыльника у Monanthes anagensis и M. muralis (Crassulaceae). – Бот. журн. 109(5): 428–445.
- EDN: QKIPNX. https://doi.org/10.31857/S0006813624050026
- Berger A. 1930. Crassulaceae. In: Engler A., Prantl K. (eds.). Die natürlichen Pflanzenfamilien. 2nd. ed. Engelmann, Leipzig. 18a: 352–483.
- Carrillo-Reyes P., Sosa V., Mort M.E. 2008. Thompsonella and the “Echeveria group” (Crassulaceae): phylogenetic relationships based on molecular and morphological characters. – Taxon. 57(3): 863–874.
- Carrillo-Reyes P., Sosa V., Mort M.E. 2009. Molecular phylogeny of the Acre clade (Crassulaceae): dealing with the lack of definitions for Echeveria and Sedum. – Mol. Phyl. Evol. 53(1): 267–276. https://doi.org/10.1016/j.ympev.2009.05.022
- Davis G.L. 1966. Systematic embryology of angiosperms. New York etc. 528 p.
- De La Cruz-López L.E., Vergara-Silva F., Santiago J.R., Ortega G.E., Carrillo-Reyes P., Kuzmina M. 2019. Phylogenetic relationships of Echeveria (Crassulaceae) and related genera from Mexico, based on three DNA barcoding. – Phytotaxa. 422(1): 33–57. https://doi.org/10.11646/phytotaxa.422.1.3
- [Goncharova] Гончарова С.Б. 2006. Очитковые (Sedoi- deae, Crassulaceae) флоры российского Дальнего Востока. Владивосток. 222 с.
- [Grigorieva, Britski] Григорьева В.В., Брицкий Д.А. 2001. Морфология пыльцы представителей подсемейства Sedoideae (Crassulaceae). – В кн.: Проблемы современной палинологии. Материалы XIII российской палинологической конференции. Т. 1. Сыктывкар. С. 22–25.
- Han S., De Bi, Yi R., Ding H., Wu L., Kan X. 2022. Plastome evolution of Aeonium and Monanthes (Crassulaceae): insights into the variation of plastomic tRNAs, and the patterns of codon usage and aversion. – Planta. 256(2): 35. https://doi.org/10.1007/s00425-022-03950-y
- Hart H. 1974. The pollen morphology of 24 species of the genus Sedum L. – Pollen & Spores. 16(4): 373–387.
- [Kamelina] Камелина О.П. 2009. Систематическая эмбриология цветковых растений. Двудольные. Барнаул. 501 c.
- Mes T.H.M., van Brederode J., ‘t Hart H. 1996. Origin of the woody Macaronesian Sempervivoideae and the phylogenetic position of the East African species of Aeonium. – Bot. Acta 109: 477–491.
- Mes T.H.M., Wijers G.-J., 't Hart H. 1997. Phylogenetic relationships in Monanthes (Crassulaceae) based on morphological, chloroplast and nuclear DNA variation. – J. Evol. Biol. 10: 193–216. https://doi.org/10.1046/j.1420-9101.1997.10020193.x/
- Mort M.E., Soltis D.E., Soltis P.S., Francisco-Ortega J., Santos-Guerra A. 2004. Phylogenetics and evolution of the Macaronesian clade of Crassulaceae inferred from nuclear and chloroplast sequence data. – Syst. Bot. 27(2): 272–288. https://doi.org/10.1943/0363-6445-27.2.271
- [Nikulin] Никулин В.Ю. 2017. Филогенетические отношения в роде Sedum L. (Crassulaceae J. St.-Hil.) и близких ему родах на основании сравнения нуклеотидных последовательностей ядерной и хлоропластной ДНК. Дисс… канд. биол. наук. Владивосток. 114 с.
- [Nikulin, Goncharov] Никулин В.Ю., Гончаров A.A. 2017. Молекулярно-филогенетическая характеристика Sedum (Crassulaceae) и близких ему родов на основании сравнения нуклеотидных последовательностей гена matK хлоропластной ДНК и его региона рибосомной ДНК. – Бот. журн. 102(3): 309–328.
- [Nikiticheva] Никитичева З.И. 1985. Семейство Crassulaceae – В кн.: Сравнительная эмбриология цветковых растений. Brunneliaceae – Tremandraceae. Л. С. 29–34.
- [Pausheva] Паушева З.П. 1974. Практикум по цитологии растений. М. 288 с.
- [Shamrov] Шамров И.И. 2008a. Семязачаток цветковых растений: строение, функции, происхождение. М. 356 с.
- [Shamrov] Шамров И.И. 2008b. Формирование спорангиев высших растений. – Бот. журн. 93(12): 1817–1845.
- [Shamrov, Anisimova] Шамров И.И., Анисимова Г.М. 2024. Структурное разнообразие андроцея и пыльника в семействе Crassulaceae. – Мат-лы XI Всеросс. конф. с междун. участием по экологической морфологии растений, посвященной памяти И.Г. и Т.И. Серебряковых. 24–26 октября 2024 г. М.: МПГУ. С. 531–536. https://doi.org/10.31862/9785426314665
- [Shamrov et al.] Шамров И.И., Анисимова Г.М., Бабро А.А. 2019. Формирование стенки микроспорангия пыльника и типизация тапетума покрытосеменных растений. – Бот. журн. 104(7): 1001–1032. https://doi.org/10.1134/S0006813619070093
- Shamrov I.I., Anisimova G.M., Babro A.A. 2020. Early stages of anther development in flowering plants. – Botanica Pacifica. A journal of plant science and conservation. – 9(2): 1–10. https://doi.org/10.17581/bp.2020.09202
- Shamrov I.I., Anisimova G.M., Babro A.A. Tapetum types and forms in angiosperms. – Proceedings of the Latvian Academy of Sciences, Section B. 2021. – 75(3): 167–179. https://doi.org/10.2478/prolas-2021-0026
- Silva R.M., Oliveira J.M.S. 2024. Occurrence of parietal and invasive tapetum in Dyckia strehliana (Bromeliaceae): first report for the family. – Rodriguésia 75: e00832023. https://doi.org/10.1590/2175-7860202475013 28-45
- Sin J.-H., Yoo Y.-G., Park K.-R. 2002. A palynotaxonomic studies of Korean Crassulaceae. – Korean J. Electron Microscopy. 32(4): 345–360.
- Thiede J., Eggli U. 2007. Crassulaceae. – In: Kubitzki K. (ed.). The families and genera of vascular plants. Hamburg. 9: 83–118.
- Anisimova G.M. 2016. Anther structure, microsporogenesis and pollen grain in Kalanchoe nyikae (Crassulaceae). – Bot. Zhurn. 101(12): 1378–1389 (In Russ.).
- Anisimova G.M. 2020. Anther development and structure in Sedum kamtschaticum and Sedum palmeri (Crassulaceae). – Bot. Zhurn. 105(11): 1093–1110 (In Russ.). https://doi.org/10.31857/S0006813620090021
- Anisimova G.M., Shamrov I.I. 2018. Gynoecium and ovule morphogenesis in Kalanchoe laxiflora and K. tubiflora (Crassulaceae). – Bot. Zhurn. 103(6): 675–694 (In Russ.). https://doi.org/10.1134/S0006813618060017
- Anisimova G.M., Shamrov I.I. 2021a. Gynoecium and ovule structure in Sedum kamtschaticum and Sedum palmeri (Crassulaceae). – Bot. Zhurn. 106(4): 50–68 (In Russ.). https://doi.org/10.31857/S000681362104002
- Anisimova G.M., Shamrov I.I. 2021b. Comparative analysis of gynoecium and ovule structure in some species of Sedum and Kalanchoe (Crassulaceae). – Bull. Main Bot. Gard. 4: 31–39 (In Russ.). https://doi.org/10.25791/BBGRAN.04.2021.1097
- Anisimova G.M., Shamrov I I. 2022a. Anther wall formation in Aeonium balsamiferum and A. ciliatum (Crassulaceae). – Bot. Zhurn. 107(6): 42–62. (In Russ.). doi: 10.31857/S0006813622060035.
- Anisimova G.M., Shamrov I.I. 2022b. Anther wall formation in Aeonium balsamiferum and A. ciliatum (Crassulaceae). – Doklady Biological Sciences. 506(1): 160–171. https://doi.org/10.1134/S0012496622050027
- Anisimova G.M., Shamrov I.I. 2023. Anther structure in Crassula ericoides, C. intermedia and C. multicava (Crassula- ceae). – Bot. Zhurn. 108(4): 22–36 (In Russ.).
- EDN: OZEEKB. https://doi.org/10.31857/S0006813623040026
- Anisimova G.M., Shamrov I.I. 2024. Anther formation in Monanthes anagensis and M. muralis (Crassulaceae). – Bot. Zhurn. 109(5): 428–445 (In Russ.).
- EDN: QKIPNX. https://doi.org/10.31857/S0006813624050026
- Berger A. 1930. Crassulaceae. – In: Engler A., Prantl K. (eds.). Die natürlichen Pflanzenfamilien. 2nd. ed. Engelmann, Leipzig. 18a: 352–483.
- Carrillo-Reyes P., Sosa V., Mort M.E. 2008. Thompsonella and the “Echeveria group” (Crassulaceae): phylogenetic relationships based on molecular and morphological characters. – Taxon. 57(3): 863–874.
- Carrillo-Reyes P., Sosa V., Mort M.E. 2009. Molecular phylogeny of the Acre clade (Crassulaceae): dealing with the lack of definitions for Echeveria and Sedum. – Mol. Phyl. Evol. 53(1): 267–276. https://doi.org/10.1016/j.ympev.2009.05.022
- Davis G.L. 1966. Systematic embryology of angiosperms. New York etc. 528 p.
- De La Cruz-López L.E., Vergara-Silva F., Santiago J.R., Ortega G.E., Carrillo-Reyes P., Kuzmina M. 2019. Phylogenetic relationships of Echeveria (Crassulaceae) and related genera from Mexico, based on three DNA barcoding. – Phytotaxa. 422(1): 33–57. https://doi.org/10.11646/phytotaxa.422.1.3
- Goncharova S.B. 2006. Subfamily Sedoideae (Crassula- ceae) of flora of the Russian Far East. Vladivostok. 222 p. (In Russ.).
- Grigorieva V.V., Britski D.A. 2001. Pollen morphology of representatives of subfamily Sedoideae (Crassulaceae). – In: Problems of modern palynology. Proc. XIIIth Russian palynological conference. Vol. 1. Syktyvkar. P. 22–25 (In Russ.).
- Han S., De Bi, Yi R., Ding H., Wu L., Kan X. 2022. Plastome evolution of Aeonium and Monanthes (Crassulaceae): insights into the variation of plastomic tRNAs, and the patterns of codon usage and aversion. – Planta. 256(2): 35. https://doi.org/10.1007/s00425-022-03950-y
- Hart H. 1974. The pollen morphology of 24 species of the genus Sedum L. – Pollen & Spores. 16(4): 373–387.
- Kamelina O.P. 2009. Systematic embryology of flowering plants. Dicotyledons. Barnaul. 501 p. (In Russ.).
- Mes T.H.M., van Brederode J., ‘t Hart H. 1996. Origin of the woody Macaronesian Sempervivoideae and the phylogenetic position of the East African species of Aeonium. – Bot. Acta. 109: 477–491.
- Mes T.H.M., Wijers G.-J., 't Hart H. 1997. Phylogenetic relationships in Monanthes (Crassulaceae) based on morphological, chloroplast and nuclear DNA variation. – J. Evol. Biol. 10: 193–216. https://doi.org/10.1046/j.1420-9101.1997.10020193.x/
- Mort M.E., Soltis D.E., Soltis P.S., Francisco-Ortega J., Santos- Guerra A. 2004. Phylogenetics and evolution of the Ma- caronesian clade of Crassulaceae inferred from nuclear and chloroplast sequence data. – Syst. Bot. 27(2): 272–288. https://doi.org/10.1943/0363-6445-27.2.271
- Nikiticheva Z.I. 1985. Crassulaceae family. – In: Comparative embryology of flowering plants. Brunneliaceae–Tremandraceae. Leningrad. P. 29–34 (In Russ.).
- Nikulin V.Yu. 2017. Phylogenetic connections in Sedum L. (Crassulaceae J. St.-Hil.) and related genera on the basis of comparison of nucleotid sequence of nuclear and chloroplast DNA: Dis. … cand. biol. nauk. Vladivostok. 114 p. (In Russ.).
- Nikulin V.Yu., Gontcharov A.A. 2017. Molecular-phylogenetic characterization of Sedum (Crassulaceae) and closely related genera based on cpDNA gene matK and its rDNA sequence comparisons. – Bot. Zhurn. 102(3): 309–328 (In Russ.).
- Pausheva Z.P. 1974. Practical work on plant cytology. Moscow. 288 p. (In Russ.).
- Shamrov I.I. 2008a. Ovule of flowering plants: structure, functions, origin. Moscow. 356 p. (In Russ.).
- Shamrov I.I. 2008b. Formation of sporangia in higher plants. – Bot. Zhurn. 93(12): 1817–1845 (In Russ.).
- Shamrov I.I., Anisimova G.M. 2024. Structural diversity of androecium and anther in Crassulaceae. – Proc. XI All-Russian Conf. with international participation on ecological morphology of plants, dedicated to the memory of I.G. and T.I. Serebryakov. October 24–26, 2024. Moscow: MPGU. P. 531–536 (In Russ.). https://doi.org/10.31862/9785426314665
- Shamrov I.I., Anisimova G.M., Babro A.A. 2019. Formation of anther microsporangium wall, and typification of tapetum in angiosperms. – Bot. Zhurn. 104(7): 1001–1032 (In Russ.). https://doi.org/10.1134/S0006813619070093
- Shamrov I.I., Anisimova G.M., Babro A.A. 2020. Early sta- ges of anther development in flowering plants. – Bota- nica Pacifica. A journal of plant science and conservation. 9(2): 1–10. https://doi.org/10.17581/bp.2020.09202
- Shamrov I.I., Anisimova G.M., Babro A.A. 2021. Tapetum types and forms in angiosperms. – Proceedings of the Latvian Academy of Sciences, Section B. 75(3): 167–179. https://doi.org/10.2478/prolas-2021-0026/
- Silva R.M., Oliveira J.M.S. 2024. Occurrence of parietal and invasive tapetum in Dyckia strehliana (Bromeliaceae): first report for the family. – Rodriguésia. 75: e00832023. https://doi.org/10.1590/2175-7860202475013 28-45
- Sin J.-H., Yoo Y.-G., Park K.-R. 2002. A palynotaxonomic studies of Korean Crassulaceae. – Korean J. Electron Microscopy. 32(4): 345–360.
- Thiede J., Eggli U. 2007. Crassulaceae. – In: Kubitzki K. (ed.). The families and genera of vascular plants. Hamburg. 9: 83–118.
Supplementary files
